Arqueología de la pesca en la costa rionegrina. Patagonia Argentina

Federico Scartascini
Arqueología de la pesca en la costa rionegrina. Patagonia Argentina.

Federico Luis Scartascini

IIDyPCa – CONICET - UNRN

2020
Arqueología de la pesca en la costa rionegrina. Patagonia Argentina.
Federico Luis Scartascini
Primera Edición 2020
©2020 en poder del autor
© Derechos reservados para todas las ediciones

Diseño interior y tapa: Florencia Galante.
Revisión general y edición: Maximiliano Javier Lezcano y José Luis Lanata.
Imagen de realizada por: Federico Quintana (Suturba Desing).

Instituto de Investigaciones en Diversidad Cultural y Procesos de Cambio
IIDyPCa-CONICET-UNRN
Mitre 630
8400, San Carlos de Bariloche
Río Negro – Argentina
iidypca@gmail.com

Queda prohibida la reproducción, total o parcial, por cualquier medio de impresión, en forma idéntica, extractada o modificada, en castellano o en cualquier otro idioma. Se permite la reproducción de citas particulares indicando la fuente.
Las opiniones vertidas en esta publicación no representan necesariamente la opinión de la institución que la edita.

Scartascini, Federico Luis
2020 Arqueología de la pesca en la costa rionegrina. Patagonia Argentina. IIDyPCa-CONICET-UNRN.
<table>
<thead>
<tr>
<th>Sección</th>
<th>Capítulo</th>
<th>Título</th>
<th>Páginas</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1.1</td>
<td>Introducción</td>
<td>9</td>
</tr>
<tr>
<td>I</td>
<td>1.2</td>
<td>Factores para el estudio de las variaciones temporales y espaciales en la subsistencia</td>
<td>9</td>
</tr>
<tr>
<td>I</td>
<td>1.3</td>
<td>La pesca como un problema de investigación arqueológico</td>
<td>11</td>
</tr>
<tr>
<td>I</td>
<td>1.3.1</td>
<td>Los recursos (peces)</td>
<td>11</td>
</tr>
<tr>
<td>I</td>
<td>1.3.2</td>
<td>La tecnología</td>
<td>12</td>
</tr>
<tr>
<td>I</td>
<td>1.3.3</td>
<td>El medioambiente físico</td>
<td>14</td>
</tr>
<tr>
<td>I</td>
<td>1.3.4</td>
<td>Organización social</td>
<td>14</td>
</tr>
<tr>
<td>I</td>
<td>1.4</td>
<td>Implicaciones de la pesca en cazadores recolectores</td>
<td>15</td>
</tr>
<tr>
<td>II</td>
<td>2.1</td>
<td>Introducción</td>
<td>19</td>
</tr>
<tr>
<td>II</td>
<td>2.2</td>
<td>La costa rionegrina: un marco ambiental</td>
<td>19</td>
</tr>
<tr>
<td>II</td>
<td>2.3</td>
<td>Paleoambientes</td>
<td>20</td>
</tr>
<tr>
<td>II</td>
<td>2.4</td>
<td>Distribución espacial y abundancia de recursos</td>
<td>22</td>
</tr>
<tr>
<td>II</td>
<td>2.4.1</td>
<td>Los recursos marinos y costeros</td>
<td>24</td>
</tr>
<tr>
<td>II</td>
<td>2.4.2</td>
<td>Hábitats para la pesca y recursos icíticos</td>
<td>25</td>
</tr>
<tr>
<td>II</td>
<td>2.4.3</td>
<td>Aspectos ecológicos de las principales especies</td>
<td>27</td>
</tr>
<tr>
<td>II</td>
<td>3.1</td>
<td>Imagen etnohistórica de la costa patagónica</td>
<td>33</td>
</tr>
<tr>
<td>II</td>
<td>3.2</td>
<td>Antecedentes arqueológicos en el área</td>
<td>34</td>
</tr>
<tr>
<td>II</td>
<td>3.3</td>
<td>El consumo de peces en áreas vecinas</td>
<td>37</td>
</tr>
<tr>
<td>II</td>
<td>3.3.1</td>
<td>Costa de Patagonia Central</td>
<td>37</td>
</tr>
<tr>
<td>II</td>
<td>3.3.2</td>
<td>Costa sur de la provincia de Buenos Aires</td>
<td>38</td>
</tr>
<tr>
<td>II</td>
<td>3.4</td>
<td>Objetivos Específicos e Hipótesis de Trabajo</td>
<td>39</td>
</tr>
<tr>
<td>II</td>
<td>4.1</td>
<td>Las muestras estudiadas</td>
<td>45</td>
</tr>
<tr>
<td>II</td>
<td>4.2</td>
<td>Métodos de análisis en restos ictiofaunísticos</td>
<td>46</td>
</tr>
<tr>
<td>II</td>
<td>4.2.1</td>
<td>Características de las muestras arqueofaunísticas</td>
<td>46</td>
</tr>
<tr>
<td>II</td>
<td>4.2.2</td>
<td>Aspectos tafonómicos</td>
<td>47</td>
</tr>
<tr>
<td>II</td>
<td>4.2.2.a</td>
<td>Controles tafonómicos en la costa rionegrina</td>
<td>49</td>
</tr>
<tr>
<td>II</td>
<td>4.2.3</td>
<td>Métodos de recolección de restos óseos de peces</td>
<td>50</td>
</tr>
<tr>
<td>II</td>
<td>4.2.3.a</td>
<td>Recolección de los restos óseos de peces en la costa rionegrina</td>
<td>51</td>
</tr>
<tr>
<td>II</td>
<td>4.2.3.b</td>
<td>Recolección de otolitos en la costa rionegrina</td>
<td>52</td>
</tr>
<tr>
<td>II</td>
<td>4.2.4</td>
<td>Identificación anatómica y taxonómica</td>
<td>53</td>
</tr>
<tr>
<td>II</td>
<td>4.2.5</td>
<td>Métodos de cuantificación en conjuntos ictiofaunísticos</td>
<td>56</td>
</tr>
</tbody>
</table>
4.2.6. Estimación de tallas a partir de otolitos.. 58
4.3. Análisis de las pesas líticas.. 59
4.3.1. Características de la tecnología pesquera... 59
4.3.2. Recolección de las pesas líticas en la costa rionegrina............................... 60
4.3.3. Métodos de análisis para las pesas líticas... 60

Capítulo 5. La localidad arqueológica Bahía Creek

5.1. Introducción ... 63
5.2. El registro pesquero recuperado en sondeos ... 64
5.2.1. Aspectos contextuales y formacionales ... 64
5.2.2. Diversidad taxonómica... 65
5.2.3. Representación anatómica ... 68
5.3. El registro pesquero recuperado en sondeos... 69
5.3.1. Restos óseos y otolitos ... 69
5.3.1.a. Análisis de tallas sobre otolitos .. 70
5.3.2. Pesas líticas... 71
5.3.2.a. Análisis métrico .. 72
5.4 Principales tendencias y comparaciones entre sectores.................................... 73
5.4.1. Tendencias en el registro ictioarqueológico... 74
5.4.2. Tendencias en las pesas líticas... 75
5.5. Breve síntesis .. 76

Capítulo 6. La localidad arqueológica Bajo de la Quinta

6.1. Introducción ... 79
6.2. El registro pesquero recuperado en sondeos ... 80
6.2.1. Aspectos contextuales y formacionales ... 80
6.2.2. Diversidad taxonómica... 81
6.2.3. Representación anatómica ... 84
6.3. El registro pesquero recuperado en superficie ... 86
6.3.1. Restos óseos y otolitos ... 86
6.3.1.a. Análisis de tallas sobre otolitos .. 87
6.3.2. Pesas líticas... 87
6.3.2.a. Análisis métrico ... 88
6.4. Principales tendencias y comparaciones entre sectores.................................. 90
6.4.1. Tendencias en el registro ictioarqueológico ... 90
6.4.2. Tendencias en las pesas líticas... 92
6.5. Breve síntesis .. 94

Capítulo 7. La localidad arqueológica Bahía San Antonio

7.1. Introducción .. 97
7.2. El registro pesquero recuperado en sondeos ... 98
7.2.1. Aspectos contextuales y formacionales ... 98
7.2.2. Diversidad taxonómica... 99
7.2.3. Representación anatómica ... 102
7.3. El registro pesquero recuperado en superficie ... 104
7.3.1. Restos óseos y otolitos ... 104
7.3.1.a. Análisis de tallas sobre otolitos .. 105
7.3.2. Pesas líticas... 105
7.3.2.a. Análisis métricos ... 106
7.4. Principales tendencias y comparaciones entre sectores............................... 108
7.4.1. Tendencias en el registro ictioarqueológico ... 108
7.4.2. Tendencias en las pesas líticas .. . 110
7.5. Breve síntesis .. 111

Capítulo 8. Las localidades arqueológicas Punta Odriozola y Arroyo Verde

8.1. Introducción .. 113
8.2. El registro pesquero recuperado en sondeos ... 114
8.2.1. Aspectos contextuales y formacionales ... 114
8.2.2. Diversidad taxonómica ... 116
8.2.3. Representación anatómica ... 119
8.3. El registro pesquero recuperado en superficie en Arroyo Verde 1 121
8.3.1. Restos óseos y otolitos ... 121
8.3.1.a. Análisis de tallas sobre otolitos .. 122
8.3.2. Pesas líticas ... 123
8.3.2.a. Análisis métricos ... 123
8.4. Principales tendencias y comparaciones entre sectores 125
8.4.1. Tendencias en el registro ictioarqueológico ... 126
8.4.2. Tendencias en las pesas líticas ... 128
8.5. Breve síntesis .. 129

Sección III ... 131

Capítulo 9. Discusiones. Parte 1: tendencias espaciales

9.1. Introducción .. 133
9.2. Variabilidad del registro pesquero en escala regional (Costa Norte/Oeste) 133
9.2.1. Tendencias en el registro pesquero recuperado en sondeos 133
9.2.2. Tendencias en el registro pesquero recuperado en superficie 136
9.2.3. Tendencias en el registro tecnológico .. 137
9.3. Variabilidad del registro pesquero en escala microregional 140
9.3.1. Tendencias en el registro pesquero recuperado en sondeos 140
9.3.2. Tendencias en el registro pesquero recuperado en superficie 143
9.3.2.a. Los otolitos de M. furnieri .. 143
9.4. Tendencias espaciales en el registro pesquero ... 144
9.4.1. Consideraciones tafonómicas ... 144
9.4.1.a. Variaciones espaciales en la preservación de restos óseos 144
9.4.1.b. Origen de los conjuntos ictioarqueológicos 146
9.4.2. Diversidad y abundancia del registro pesquero 148

Capítulo 10. Discusiones. Parte 2: tendencias temporales

10.1. Introducción ... 151
10.2. Bloque Cronológico Temprano (6000-4000 años AP) 151
10.3. Bloque Cronológico Medio (ca. 3000 años AP) .. 155
10.4. Bloque Cronológico Tardío (2000- 800 años AP) 157
10.5. Comparación entre Bloques ... 160
10.5.1. Variaciones diacrónicas en la preservación de los restos óseos 160
10.5.2. Abundancia ... 162
10.5.3. Diversidad taxonómica ... 163
10.5.4. Tendencias temporales ... 165
Capítulo 11. Consideraciones finales

11.1. Introducción .. 171
10.2. Arqueología de la pesca en la costa rionegrina .. 171
11.3. Consideraciones finales y perspectivas futuras ... 174

Sección IV ... 177

Apéndice .. 179

Bibliografía .. 205
AGRADECIMIENTOS

Este libro es el resultado de mi tesis doctoral defendida el día 11 de diciembre de 2014, en la Facultad de Filosofía y Letras de la Universidad de Buenos Aires.

En primera instancia debo mencionar que esta tesis se realizó en el marco de proyectos financiados por el CONICET y la Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), mi agradecimiento a estas instituciones. Además, el CONICET me otorgó las becas doctorales que me posibilitaron ocuparme plenamente de mi proyecto de investigación. Agradezco especialmente al director del IMHICIHU al Dr. Ariel Guiance; al Dr. Gustavo Politis director del INCUAPA y al Lic. Luis Abel Orquera director de la AIA por permitirme desempeñar mi trabajo en los mencionados institutos.

Quiero agradecer a mis directores Florencia Borella y Pancho Zangrando que me brindaron desinteresadamente su ayuda en distintas etapas de mi investigación desde que me inicié como estudiante de grado. Sus comentarios y recomendaciones han sido formativas tanto a nivel profesional como personal. Han sido igualmente importantes los comentarios, charlas y discusiones que tuve con Cristian Favier Dubois, Luis Borrero, mi Co-Director de beca, Marcelo Cardillo y Ramiro Barberena. A todos ellos les estoy infinitamente agradecido por su ayuda durante mi formación de grado y de doctorado.

No está de más decir que mi trabajo no hubiese sido posible sin la ayuda y colaboración de mis compañeros de equipo: Hernán Marani, Jime Alberti, Florencia Ortega, Alejandra Marcos, Erika Borges Baz y Eugenia Carranza.

Quiero agradecer también a Willie Mengoni Goñalons, Javier Musali, Jimena Torres, Foss Leach Ariadna Sbovoda y Mercedes Corbat quienes siempre respondieron gentilmente a las consultas que les he realizado, sobre todo en cuanto a la búsqueda bibliográfica. Sergio Bogan fue una gran ayuda en la identificación de peces, tanto a partir de las consultas que le realicé en distintos momentos, como por su gentil préstamo de muestras comparativas.

Siento una gran gratitud con los colegas del Instituto de Biología Marina Almirante Storni (Raúl González, Ale Romero y Guille Svendsen), quienes siempre están atentos a nuestros pedidos de bibliografía, asesoramiento y son una gran ayuda en el campo. De igual forma que los propietarios y encargados de las estancias en donde realizamos nuestros trabajos de campo.

Alejandra Volpedo es una persona extraordinaria con quien aprendí mucho acerca de la vida de los peces, sus comentarios fueron indispensables para la realización de este trabajo y por eso le estoy muy agradecido.
Quiero agradecer también a los jurados de la tesis (Dr. Alejandro Acosta, Dr. Javier Musali y Dr. Diego Rindel) por sus comentarios que sin duda mejoraron este manuscrito. La última instancia de este largo trabajo, es decir la publicación de este libro, fue posible por la generosa oferta del Dr. José Luis Lanata, director del Instituto de Investigaciones en Diversidad Cultural y Procesos de Cambio (II-DyPCa- CONICET- UNRN), de publicar este manuscrito. Este proceso final no hubiese sido posible sin la atenta y dedicada tarea del Lic. Maximiliano Lezcano, quién se encargó de la revisión de estilo, la adecuación de las figuras y la actualización bibliográfica y de Florencia Galante, quién realizó la edición final y la diagramación del libro. Muchas gracias a todos ellos.

Finalmente tengo la necesidad de agradecer profundamente a mi querida familia. A mi papá y mi mamá (Ana y Luis) y a mis hermanos (Yago, Alejo y Matías) que me permitieron elegir con toda libertad una forma de vida y me dieron todos los medios para que pudiera llevarla adelante, no alcanzarán los días para expresar el amor que les tengo.

Gracias Vicky, Rama, Clari, Malacara y Suko por permitirme el placer y el orgullo de formar una familia junto a ustedes. Todo cobra sentido con ustedes cerca.

San Carlos de Bariloche, Julio de 2019
Este libro ofrece un sólido análisis y discusión sobre las prácticas de pesca desarrolladas durante el Holoceno en la costa del golfo San Matías (Río Negro). Federico Scartascini ya había comenzado a desarrollar este tema con sus estudios de grado, el cual -desde un inicio- constituyó un desafío polifacético que el autor fue enriqueciendo durante sus estudios doctorales al articular análisis zooarqueológicos, tecnológicos y paleoambientales. Este tema no tenía mayores precedentes para la costa de Patagonia continental. No solo era muy escasa la información que existía con relación al modo de subsistencia de los grupos cazadores-recolectores en aquel sector, sino que además existía el fuerte presupuesto de que la base de la subsistencia de los grupos cazadores-recolectores de Patagonia había sido el guanaco de acuerdo a lo que tradicionalmente señalaban las investigaciones arqueológicas regionales. De esta manera centrar el foco de estudio en una evidencia "diferente" a la que venían estudiando los especialistas significaba casi una provocación, que solo con un estudio profundo, sistemático y meticuloso podían llegar a buen puerto. Es por ello que los resultados aquí presentados permitieron comprender una relación entre cazadores-recolectores y recursos marinos que no era ni remotamente imaginada pocas décadas atrás. Esto no solo se debe a que la importancia de estos recursos para sociedades prehispánicas fue significativamente mayor a la estimada según los modelos etnohistóricos, sino que además la evidencia muestra una tendencia temporal decreciente en la importancia de estos recursos. Esta interpretación, respaldada por datos convincentes, contrasta con lo propuesto por modelos para otras regiones, los cuales marcan generalmente trayectorias hacia una intensificación del aprovechamiento de los peces y no de disminución. Las implicaciones que esto propone para las discusiones sobre el poblamiento del norte de Patagonia resultan clave.

El trabajo de investigación desarrollado por el autor no sólo significó un importante avance sobre el conocimiento de las sociedades cazadoras-recolectoras que poblaron el norte de Patagonia, sino que también propone un enfoque innovador. Su abordaje sobre la arqueología de la pesca plantea una perspectiva multidisciplinaria con varios aspectos relevantes a destacar. En primer lugar la búsqueda de una metodología adecuada al tipo de evidencia y a la naturaleza de las muestras bajo estudio. Luego, la exploración de aspectos muy distintos que involucraron la identificación de especies en el registro arqueológico; los problemas de sesgos en muestras recuperadas en superficie y los de las muestras procedentes de estratigrafía; el manejo adecuado de las escalas de interpretación; la exploración de técnicas de captura en relación a la etología de las especies y su vinculación con determinados escenarios litorales, e incluso el planteo de cambios temporales de ciertas especies halladas en el registro arqueológico. De esta forma, los resultados alcanzados en esta tesis y que se ofrecen ahora en este libro, son una combinación de múltiples y muy diversos niveles de análisis que incluyen tanto
conocimiento específico de la evidencia ictioarqueológica como de la tecnología lítica asociada (pesas y pesas de red). Ello significó una activa interacción con diferentes especialistas que le permitió a Federico Scartascini alcanzar un profundo nivel de conocimiento de la evidencia estudiada, realizar una rica discusión y generar un valioso aporte que sin duda cambió el panorama de la arqueología costera patagónica. Pero al mismo tiempo este estudio sólidamente fundamentado se constituyó en un caso particular de estudio de sociedades humanas del pasado que ocuparon sectores litorales.

Así, entrelazando diferentes líneas de evidencia adecuadamente articuladas pero estrechamente vinculadas al eje central de este estudio “la explotación de los peces por grupos cazadores-recolectores en el pasado”, este libro nos invita a explorar los temas a partir de múltiples aspectos que enriquecen nuestro conocimiento sobre sociedades humanas del pasado.

Florencia Borella y Atilio Francisco Zangrando

Olavarría-Ushuaia, noviembre de 2018
INTRODUCCIÓN GENERAL

Presentación del tema de estudio y objetivos generales

El objetivo principal de este libro es estudiar el registro pesquero recuperado en las distintas localidades arqueológicas de la costa rionegrina del Golfo San Matías (en adelante GSM) (Figura 1). A nivel general este trabajo se enmarca dentro de un proyecto mayor que busca caracterizar el uso que hicieron las poblaciones humanas de los ambientes y recursos costeros en el litoral rionegrino del GSM desde el 6000 AP, a partir de una perspectiva distribucional, geoarqueológica y tafonómica (Borella et al., 2006; Favier Dubois et al., 2008).

![Figura 1. Mapa del área de estudio y principales localidades arqueológicas.](image)

Este libro se enfocará en caracterizar la evidencia arqueológica pesquera, vinculando el análisis de los restos ictioarqueológicos (huesos y otolitos) con la tecnología de pesca (pesas líticas). Estos resultados se discutirán a la luz de otros análisis -algunos de ellos preliminares- que ya fueron presentados: estacionalidad (Scartascini et al. 2013), estudios actualísticos (entrevista con pescadores artesanales del área y experimento tafonómico), análisis paleoambientales/paleoecológicos (Favier Dubois y Scartascini 2012; Scartascini y Volpedo...
2013) y observaciones metodológicas referentes a la forma de recuperación de los restos ictioarqueológicos (Scartascini 2011).

La principal tesis a sostener en esta investigación es que los peces fueron un recurso valioso para la subsistencia de los grupos cazadores de la costa Norpatagónica dado que pueden ser aprovechados de forma masiva, son altamente nutritivos y presentan una distribución conspicua, abundante y diversa (en cantidad de especies) en el área. Para discutir esta propuesta los objetivos principales de este libro son:

1. Estudiar el registro pesquero (el material ictioarqueológico y el tecnológico) en diferentes escalas espaciales para evaluar las variaciones latitudinales, ambientales y microambientales en los distintos espacios litorales del GSM.

2. Determinar las variaciones temporales en el uso de los peces como presas (en vinculación con otros recursos) y evaluarlas en función de los cambios ambientales y culturales propuestos para el área (p.e., las variaciones en la línea de costa, la intensificación durante el Holoceno tardío final propuesta por Favier Dubois y Kokot 2011; Favier Dubois et al. 2009).

Para poder desarrollar el primer objetivo fue necesario analizar las propiedades distribucionales (estructura y diversidad) del registro pesquero a lo largo de la costa rionegrina. Este trabajo se plantea en una escala espacial regional (cerca de 380 km de costa), atendiendo a las variaciones ambientales a nivel micro-regional y local. El acercamiento sigue los lineamientos de los proyectos de investigación arqueológica en el área; que son dirigidos por la Dra. Florencia Borella y el Dr. Cristian M. Favier Dubois y se encuentran financiados por la Agencia FONCyT, el CONICET y por un subsidio de la National Geographic Fundation. La integración de los datos en dos escalas espaciales diferentes permitirá caracterizar la actividad pesquera en toda la extensión de la costa rionegrina y evaluar en qué medida las diferencias ambientales y microambientales (tipo de costa, sustrato, disponibilidad de recursos, etc.) afectaron el aprovisionamiento del recurso íctico en el pasado. Para esta evaluación se presentan los datos de cinco localidades arqueológicas distribuidas a lo largo de la costa rionegrina. En conjunto se analizaron 31 sondeos y 60 recolecciones superficiales, que suman un total de 15411 restos ictioarqueológicos y 150 pesas líticas, lo que constituye una muestra adecuada para llevar adelante los objetivos planteados.

Respecto del segundo objetivo, este trabajo se plantea en una escala temporal amplia, considerando los conjuntos arqueofaunísticos desde el Holoceno medio hasta el Holoceno tardío final. Se buscará captar la variación en la práctica pesquera en relación con los cambios diacrónicos propuestos en el uso del espacio y los recursos costeros (Favier Dubois et al. 2009; Borella et al. 2011; Borella y L’Heureux 2013; Marani 2014) y la evolución del paisaje litoral en escala local (Favier Dubois y Kokot 2011; Kokot y Favier Dubois 2010). En este sentido, se cuenta con más de 80 fechados radiocarbónicos a lo largo de toda la costa rionegrina (Favier Dubois 2013), con cronologías que van desde ca. 6000 años AP hasta ca. 800 años AP, muchos de los cuales corresponden a los conjuntos analizados en este trabajo.
Introducción

Estado de la cuestión

En mi tesis de licenciatura (Scartascini 2010) estudié el abundante registro ictioarqueológico en dos localidades de la costa norte del GSM y las tecnologías de pesca asociadas. Estos primeros análisis mostraron que los peces constituyeron un recurso de gran importancia y que fue explotado de forma continua desde el Holoceno medio, es decir desde los primeros registros de ocupaciones humanas en el área. Esto luego fue corroborado a partir de estudios isotópicos (Favier Dubois et al. 2009). También advertí variaciones espaciales y temporales en la utilización de los recursos ícticos en la costa norte del GSM. Las diferencias observadas entre las dos localidades fueron evaluadas en términos de la disponibilidad diferencial de recursos ícticos en dos ambientes disímiles. Finalmente, se registraron variaciones en la abundancia y diversidad de especies en momentos pre y post 2000 años AP, patrón que vinculé a técnicas de captura diferentes. Este escenario pesquero no parece tener paralelos en ninguna otra área de la costa atlántica patagónica (ver Castro et al. 2008; Gómez Otero 2007; 2008; Gómez Otero et al. 2009; 2013; Moreno et al. 2011, entre otros), excepto en la costa del Canal Beagle (Zangrando 2009a, entre otros).

En el presente trabajo incluyo nuevas muestras distribuidas en una mayor variedad de ambientes a lo largo de la costa rionegrina, que permitirán continuar evaluando y discutiendo el papel de la actividad pesquera durante el Holoceno medio y tardío. Con el acercamiento teórico-metodológico que adopté en este trabajo busco integrar distintas líneas de trabajo para desarrollar una Arqueología de la Pesca y de esta manera complementar y enriquecer el análisis y las interpretaciones estrictamente ictioarqueológicas.

Organización del libro

El presente libro está organizado en cuatro secciones generales, tres de ellas están integradas por varios capítulos y la última, por el Apéndice y la lista de la bibliografía citada. La Sección I se aboca a la presentación general de la investigación (Introducción), el marco teórico (capítulo 1), la región de estudio y el marco ambiental y paleoambiental (capítulo 2) y los antecedentes etnográficos y arqueológicos del área y regiones cercanas. Finalmente, a partir de estos antecedentes se plantean los objetivos e hipótesis de trabajo (capítulo 3).

La Sección II describe la metodología propuesta para el análisis del registro pesquero en el área (capítulo 4) y en la presentación de los resultados obtenidos en el análisis de los conjuntos pesqueros (capítulos 5 a 7) y sus resultados. El capítulo 8 incluye el análisis de las dos localidades ubicadas en la costa oeste. Esta sección compendia la nueva información producida en el marco de la presente investigación.
La Sección III integra los capítulos que discuten las principales tendencias espaciales del registro pesquero (capítulo 9), las variaciones temporales en la práctica pesquera (capítulo 10) y la discusión e integración final de los datos (capítulo 11). En resumen esta sección desarrolla el nuevo estado del problema alcanzado. Finalmente, Sección IV está integrada por un apéndice y por la bibliografía citada en el texto. El apéndice incluye las tablas que agrupan los datos de base a partir de los cuales se realizaron los análisis en esta investigación.
Sección I
ANTECEDENTES TEÓRICOS METODOLÓGICOS

1.1 Introducción

Las investigaciones arqueológicas que se están desarrollando desde el año 2004 en la costa rionegrina del GSM se estructuran dentro de la Arqueología Ambiental (Dincauze 2000) o Contextual (Butzer 1989). Ambas consideran a los conjuntos arqueológicos como parte de un ecosistema humano, “dentro del cual las comunidades del pasado desarrollaron una interacción espacial, económica y social con las texturas medioambientales en las que estaban entrelazadas adaptativamente” (Butzer 1989:6). La idea principal es impulsar una investigación globalizadora, que integre las interacciones sistémicas entre factores y procesos culturales, biológicos y físicos, es decir comprender el ecosistema humano.

En este sentido, los proyectos que enmarcan este trabajo se desarrollan en un marco que integra estudios distribucionales, geoarqueológicos, tafonómicos y paleoambientales (Borella et al. 2006; Favier et al. 2008). Los trabajos realizados buscan focalizar los esfuerzos en captar la variación espacial (en más de 380 km lineales de costa) y temporal (entre los 6000 años AP y el siglo XIX) de las adaptaciones humanas en este tramo de la costa patagónica. El acercamiento propone una mirada regional del registro arqueológico, centrándose en las diferencias ambientales (v.g. morfología costera, disponibilidad y acceso a los recursos) y su posible correlato en el uso humano de las distintas áreas (Beaton 1995; Favier Dubois y Borella 2011).

En este capítulo se presentan y discuten algunos conceptos teórico-metodológicos que considero que me permitirán analizar y discutir adecuadamente el caso de la pesca como una estrategia de subsistencia en los grupos cazadores recolectores de la costa rionegrina del GSM.

1.2 Factores para el estudio de las variaciones temporales y espaciales en la subsistencia

Durante los últimos 30 años se ha dado un creciente desarrollo de los estudios vinculados a la subsistencia humana, principalmente a partir de los conceptos y modelos desarrollados en el marco de la arqueología procesual (Binford 2001) y la ecología del comportamiento humano (Bird y O´Connell 2006). En este sentido, los zooarqueólogos han utilizado con mucha frecuencia las predicciones derivadas de los modelos de la teoría de predación óptima (Stephens y Krebs 1986), para explicar las variaciones en la abundancia y riqueza taxonómica de los conjuntos arqueológicos (Bettinger 1991; Kelly 1995; Winterhalder y Smith 2000; entre muchos otros).

El principal supuesto de estos modelos es que todos los individuos están biológica y cognitivamente capacitados para seleccionar ciertos tipos de recursos o
ambientes que aumenten su ingreso de energía neta por unidad de tiempo de aprovisionamiento y de esta forma incrementar su fitness (Stephens y Krebs 1986; Smith 1993). Es decir, que los modelos están diseñados para predecir qué ítems serán incluidos en la dieta del predador de acuerdo a su retorno energético esperado. Los recursos potenciales son ordenados de “alto” a “bajo” rendimiento, situación que generalmente está determinada por el tamaño, la densidad y su distribución espacial de la presa (Stephens y Krebs 1986; Broughton 1994, 1997). Como destacó Lyman 2003), los modelos de la teoría del aprovisionamiento óptimo aplicados en el campo de la zooarqueología pueden agruparse en dos clases principales: el modelo de selección de presas y el modelo de selección de parcelas. Ambos modelos parten de dos premisas básicas:

1) la abundancia de un recurso no influye por sí sola en su inclusión en la dieta, sino que va a depender de la abundancia de recursos de mayor ranking;

2) a medida que la abundancia de recursos de alto ranking declina, aumenta la inclusión de recursos de bajo rango en la dieta.

Del segundo punto se desprende que si un recurso de alto ranking aparece con muy baja frecuencia y de forma discontinua producirá una tasa de rendimiento muy baja. En este sentido, si los costos de búsqueda de los recursos mejor rankeados son muy altos el predador cambiará su objetivo a recursos de más bajo ranking pero que sean menos costosos de obtener.

Durante los últimos años se registraron un gran número de cuestionamientos al uso del tamaño corporal como la variable crítica para establecer rankings. Según muchos autores esta premisa sólo puede ser sostenida cuando se trata de presas que fueron obtenidas individualmente (ver Lupo y Schmit 2005). Sin embargo dichos autores observan que esta ecuación no es aplicable en especies que pueden ser explotadas a partir de técnicas masivas, en dicho caso un gran número de recursos de bajo ranking puede ofrecer retornos energéticos más altos que una presa de alto ranking (Grayson y Cannon 1999). En consecuencia, la variable más importante que se debería considerar es la biomasa total del conjunto y no el tamaño corporal de cada presa individual (Madsen y Schmitt 1998; Ugan 2005). En este sentido, la tecnología de aprovisionamiento no puede dejar de ser contemplada al momento de considerar el rendimiento energético de las presas (Madsen y Schmit 1998; Jones 2006).

Otros aspectos han sido considerados y discutidos en relación con la construcción de los rankings, entre ellos las propias características de las especies (distribución, movilidad, estacionalidad, etología, etc.) (ver Bird et al. 2009). También deben incluirse factores sociales como los propios objetivos en el forrajeo de los cazadores recolectores (Lupo y Schmit 2005) o la presencia de tabúes alimenticios (ver Politis 2007), entre otros.

Considerando esto, podría plantearse que el estudio de los recursos de bajo ranking constituye un punto que no puede ser eludido a la hora de caracterizar la subsistencia de los grupos humanos (Madsen y Schmitt 1998) sobre todo en situaciones bajo las cuales estos pueden ser procurados a partir de técnicas masivas.
1.3 La pesca como un problema de investigación arqueológico

Erlandson y Fitzpatrick (2006) definen a la pesca como cualquier actividad económica centrada en la caza, pesca o recolección de animales acuáticos ya sea en ámbitos marinos o costeros. Dentro de esta definición la pesca incluye una gran variedad de actividades (marisqueo, pulpeo, pesca, caza, etc.) que requieren una amplia gama de capacidades cognitivas, tecnológicas y de comportamiento (Erlandson y Fitzpatrick 2006:8). A diferencia de otras actividades de subsistencia desarrolladas en ámbitos terrestres, en donde las presas están la mayor parte del tiempo visibles, las prácticas de explotación de recursos en ambientes marinos implica la nula o parcial observación de las presas que se encuentran en ámbitos subacuáticos. En este sentido la pesca puede definirse como una actividad riesgosa con un alto grado de incertidumbre (Acheson 1981), ya que implica una serie de desafíos adicionales (respecto de las actividades de subsistencia en ambientes terrestres) para aquellos que la quieren llevar adelante.

En concreto entonces, la pesca es una actividad en donde una serie de variables interactúan para lograr una adecuada y completa adaptación a los ambientes acuáticos y esas variables implican un conjunto de constreñimientos y problemas poco usuales en ámbitos terrestres, es por este motivo que la pesca como estrategia requiere un tratamiento específico. Sin embargo, fue particularmente escaso el desarrollo que esta temática tuvo desde la Antropología y la Arqueología a nivel global. Los antecedentes bibliográficos son escasos y en general incompletos (Acheson 1981). De hecho, salvo excepciones (por ejemplo Costa Noroccidental de Norte América) la mera presencia de restos de peces en los sitios arqueológicos fue condición suficiente para presuponer prácticas pesqueras, sin plantearse de que manera fueron aprovechados estos recursos. En muchas investigaciones la pesca como actividad fue (y sigue siendo en varios casos) una categoría marginal (Pálsson 1988).

A nivel general podríamos decir que la pesca se encuentra estructurada al menos a partir de cuatro factores principales: 1- los recursos explotados; 2- la tecnología de pesca; 3- los ambientes físicos, en donde se lleva a cabo la pesca y 4- el contexto social o cultural. La perspectiva de esta investigación considera que estos cuatro aspectos pueden generar correlatos materiales visibles arqueológicamente y pueden ser integrados en una discusión para desarrollar una arqueología de la pesca. A continuación se discuten cada uno de estos factores.

1.3.1 Los recursos (peces)

Los ambientes marinos suelen disponer de un gran número de especies con diferentes hábitos de comportamiento y que lógicamente requieren de técnicas y estrategias de captura disímiles. Muchas especies sólo se encuentran disponibles estacionalmente y en ocasiones presentan patrones de variación en su disponibilidad que incluso en la actualidad son difíciles de predecir (por ejemplo, Scartascini y Volpedo 2013). En el caso de los peces, nuestro tema específico, la variabilidad de especies y consecuentemente de comportamientos es abrumadora, siendo que los peces superan a todos los demás vertebrados, tanto en número de individuos como en la cantidad de especies (Wheeler y Jones 1989). Debido a que liberan miles y miles de huevos en cada desove, las poblaciones de peces pueden sobrevivir a la mortalidad producida por depredadores o por condiciones...
ambientales desfavorables, por lo tanto podrían considerarse como un recurso muy estable.

En términos nutricionales los peces son una fuente de alimento muy completa con altos niveles de proteínas, vitaminas y minerales, aunque suelen ser bajos en hidratos de carbono (ver Erlandson 2001). Los peces pequeños, que son consumidos enteros (con cabeza, órganos y huesos), son particularmente ricos en calcio, algunos también son ricos en vitamina A, hierro y zinc y son fácilmente asimilados por los humanos (FAO, 2012). Además los peces facilitan la absorción de hierro y zinc de otros alimentos. Sobre una base de peso fresco, el pescado contiene una buena cantidad de proteína, aproximadamente 18-20%, y contiene los ocho aminoácidos esenciales, incluyendo la lisina que contienen azufre, metionina y cisteína (Tacon y Metian 2013).

La carne de pescado se metaboliza con facilidad y los altos índices de consumo modernos parecen estar relacionados con tasas más bajas de enfermedad y vidas más largas (Erlandson 2001). El contenido de grasa del pescado varía según la especie, así como la temporada, pero, en general, los peces tienen menos grasa que las carnes rojas. El contenido de grasa varía de 0,2% a 25% y corresponde principalmente a ácidos grasos polinsaturados que confieren una gran cantidad de beneficios nutricionales en los humanos, principalmente en niños y nonatos (Tacon y Metian 2013).

De hecho, la nueva evidencia acerca de la explotación de peces en las poblaciones humanas del pasado muestra que estos recursos fueron más importante de lo que se consideró tradicionalmente. Existe evidencia clara de consumo sistemático de peces ya desde el paleolítico superior ca. 40000 años AP (Henshilwood y Sealy 1997; Erlandson y Fitzpatrick 2006). Incluso se afirma que el consumo de peces pudo haberse dado desde momentos muy tempranos entre los primeros homininos (Leaky 1965; Erlandson 2001; Erlandson y Fitzpatrick 2006). Incluso Erlandson (2001) y Erlandson y Fitzpatrick (2006) vincularon las adaptaciones a ambientes costeros/acuáticos con la dispersión de los homininos por África, Asia y Europa y luego la colonización del *Homo sapiens* por el resto del mundo.

1.3.2 La tecnología

La tecnología utilizada para llevar adelante la pesca debe "adaptarse a las condiciones acuáticas" lo que significa que "los dispositivos de pesca no son simplemente transferencias de los dispositivos de caza en tierra, y muchas de las características tecnológicas de estos artefactos no aparecen en los dispositivos de caza usadas fuera del agua" (Acheson 1981:239).

Un primer aspecto para considerar tiene que ver con el tipo de pesca que se realiza: la pesca costera (sólo esta será contemplada en este trabajo) o pesca marina. La información etnohistórica y etnográfica a lo largo del mundo muestra una gran variedad de técnicas y dispositivos de pesca en ámbitos costeros (Wheeler y Jones 1989; Aswani 1998; Lindström 1996; Winterhalder 1981; Dortch 1997; Ahmed y Hambrey 2005; Kennett 2005; Campán y Manzi 2000), que a modo de síntesis pueden ser ordenados en cuatro tipos tecnológicos generales: 1- líneas; 2- redes; 3- arpones; 4- trampas o estructuras como lo son los corrales de pesca (Wheeler y Jones 1989: 168).
De forma genérica podría decirse que existen técnicas de pesca selectivas (líneas de pesca) y técnicas masivas (redes y trampas) (Leach 1994). Las técnicas de pesca con red y con línea difieren en aspectos centrales, no sólo vinculados con las características tecnológicas, sino en el nivel de las estrategias de aprovisionamiento, organización y subsistencia de los grupos pescadores.

El uso de redes de pesca implica un alto costo energético en la elaboración, la operación y el mantenimiento de la red, pero produce la obtención masiva de especímenes. En cambio el empleo de líneas de pesca requiere una menor inversión de energía en la formatización y el uso pero genera retornos energéticos menores y requiere mayor destreza en la ejecución (Torres 2007a). Owen y Merrick (1994) destacaron que el uso de tecnologías individuales, como son las líneas de pesca con anzuelos, produce una gran selectividad en las tallas y las especies capturadas. Esto está determinado por el tamaño del anzuelo utilizado, la profundidad que alcanza la línea en la columna de agua y el tipo de cebo o carnada seleccionada (Figura 1.1).

Los métodos más masivos como las redes o trampas, por su parte, generan capturas menos selectivas tanto en talla como en taxones (Figura 1.1). Aunque esto no siempre es así, en ocasiones la pesca con redes puede estar dirigida a cardúmenes específicos, con lo que la resultante son conjuntos muy numerosos y relativamente bien seleccionados. En este sentido, Greenspan (1998), sugirió que cuando el tamaño del enmalle de la red es lo suficientemente grande para que sólo queden entrampados los peces de tamaños grandes, son esperables capturas bien seleccionadas.
1.3.3 El medioambiente físico

No todos los ambientes presentan las mismas características, en cuanto a aspectos fisiográficos, geomorfológicos, tipo de sustrato, cantidad y variedad de recursos, etc. es decir que no todos son igualmente valorados en términos de su potencial pesquero. De hecho, las posibilidades de pesca en ambientes costeros abiertos (es decir expuestos al mar abierto) o en ambientes cerrados o semicerrados (por ejemplo, caletas, bahías, etc.) son en principio bien disímiles no sólo en cuanto a las técnicas de pesca que se puedan llevar a cabo en cada uno de ellos, sino también en cuanto a las especies disponibles en uno y otro ambiente. Igual razonamiento podemos tener en relación con los sustratos, por ejemplo los sustratos rocosos (plataformas litorales) ofrecen la posibilidad de obtener peces y otros recursos en pozones o bajo las rocas sin ningún tipo de tecnología específica para la captura. En este sentido, existe toda una variedad de especies de peces que se encuentran asociados a estos fondos duros y que pueden ser perfectamente detectados arqueológicamente.

Debido a que los ambientes marinos son especialmente dinámicos en cuanto a su configuración geomorfológica, un aspecto que se debe considerar son los cambios ambientales principalmente en cuanto las variaciones en el nivel del mar. Los cambios en la línea de costa no solo están vinculados a cuestiones geoarqueológicas y de formación de los sitios (ver Erlandson 2001; Erlandson y Fitzpatrick 2006), sino que también tienen gran importancia en la disponibilidad y accesibilidad a ciertos recursos.

Otro ejemplo, aunque no vinculado con cambios en el nivel relativo del mar sino con cambios en el ambiente marino circundante, son los trabajos de Elizabet Reitz y Daniel Sandweiss en la costa peruana. A partir de la evidencia ictioarqueológica detectada en el sitio Ostra Base Camp y otros sitios cercanos, evalúan los cambios en las estrategias de pesca y en la diversidad de especies (especies de agua templado/cálida y especies de agua fría) en relación con la aparición del fenómeno “El Niño” (Reitz y Sandweiss 2001; ver también Sandweiss, 2003 y Sandweiss et al. 2004).

Estos trabajos no hacen más que mostrar que las variaciones en los entornos costeros, tanto en la costa como en los ambientes marinos cercanos, constituyen factores centrales a la hora de caracterizar las estrategias de pesca en un área. Los cambios en las condiciones ambientales generan nuevos escenarios en cuanto a la diversidad y accesibilidad de los recursos y por lo tanto en la estrategia de pesca implementada y su correlato arqueológico (a nivel ictioarqueológico y tecnológico).

1.3.4 Organización social

Tradicionalmente, la discusión respecto a la organización socio-espacial de los grupos cazadores recolectores ha girado en torno al concepto de banda. La banda fue considerada como pequeños grupos sociales con una membresía coherente y común. Este concepto fue largamente discutido en la bibliografía arqueológica (Yellen 1977; Binford 2006; Borrero et al. 2011; entre otros). Actualmente las bandas son concebidas como agregaciones temporales de familias o individuos, y estos a su vez tienen derechos en más de un territorio, de hecho en casos de necesidad el tamaño de la banda puede disminuir rápidamente o incluso
Capítulo 1

desaparecer (Yellen 1977:44 en Borrero et al. 2011:253). Al parecer, los estudios recientes en cazadores recolectores mostraron que la organización socio espacial de estos grupos se asimila mucho más a un constante flujo de población en movimiento que a establecimientos concentrados y con límites claros (Borrero et al. 2011). Según Binford (2006), la unidad básica de toma de decisiones no debe buscarse en la banda tal y como fuera definida clásicamente sino que es la familia la unidad más estructurada y constante.

El tamaño y composición de los grupos, la estacionalidad, el grado de movilidad y permanencia en los ambientes costeros son factores claves para caracterizar el modo de subsistencia. Pensando en la pesca específicamente, estos aspectos pueden contribuir o limitar (dependiendo el caso) las estrategias de aprovisionamiento del recurso íctico.

En un intento por distinguir modos de uso del espacio costero y sus recursos, Lyman (1991) propone diferenciar las “cultura marítimas” y las “culturas litorales”. Las primeras son "aquellas cuya base de recursos está enfocada primordialmente en el mar. Las tecnologías utilizadas son específicamente aplicables a la explotación de recursos marinos y adaptadas a ellos, y las formas de vida y la filosofía de los pueblos en cuestión están orientadas hacia el mar" (Lyman 1991). Por ejemplo, en la Costa del Noroeste de América del Norte y los canales fueguinos, los pueblos marítimos poseen canoas que les permiten explotar "regularmente" el mar abierto y usar sus aguas como área de caza y pesca. En cambio, las culturas litorales son descriptas como las "que dependen intensamente del mar como fuente de recursos, pero no poseen la refinada tecnología (por ejemplo botes) que les permita usar el mar abierto como área de caza y pesca" (...) “La gente de las culturas litorales habita un ambiente costero, pero no va al mar a cazar y pescar; en cambio, explota los diversos microambientes costeros y terrestres adyacentes a la costa" (Lyman 1991: 76).

Más allá de las definiciones, existen diversas formas de organización socio espacial en los grupos cazadores recolectores, que influirá en las distintas formas del uso del espacio y los recursos. En el caso de los grupos que habitan áreas costeras las expectativas para la pesca no son iguales en poblaciones que disponen de tecnologías de navegación que en aquellas en las que estos artefactos no están disponibles. El uso de embarcaciones permite acceder a otro tipo de recursos e implementar otras técnicas de captura.

1.4 Implicaciones de la pesca en cazadores recolectores

En un trabajo pionero, Murdock (1969) sugirió que “La pesca es el único modo relativamente simple de subsistencia que parece conducente a un modo sedentario de vida, y es altamente probable que antes de la aparición de la agricultura, unos 10000 años atrás, las únicas poblaciones sedentarias durante muchos milenios fueran grupos de pescadores” y que “no sólo las sociedades pescadoras son usualmente sedentarias, sino que suelen generar instituciones sociales de una mayor complejidad que aquellas observadas entre grupos cazadores recolectores no pescadores” (Murdock 1969:145).

Resultados similares mostraron distintos trabajos etnográficos y etnoarqueológicos a lo largo del mundo (Binford 2001; Kelly 1995; Marlowe 2005). Al parecer, el consumo de recursos marinos condicionó la forma y el tamaño de
los rangos de acción de los grupos humanos. Entendiendo el rango de acción como el espacio físico ocupado por un grupo u individuo (Barberena, 2008). En este sentido, Yesner (1980) planteó que debido a la estructura de los recursos costeros, la forma más ventajosa para la explotación es a partir de lugares centrales y partidas logísticas. Este patrón logístico implica al menos grupos semi-sedentarios, en términos de Binford (1980). Posteriormente Kelly (1995) observó que existe mayor dependencia de recursos acuáticos en ambientes fríos que en ambientes cálidos, lo que a su vez se relaciona con rangos de acción más pequeños y por lo tanto con una menor eficacia en la caza terrestre (Kelly, 1995:72). La dependencia en recursos acuáticos parece estar en la mayoría de los casos asociada a una baja movilidad residencial. Es decir, se observó que la explotación de estos recursos implica una relación inversa entre el número de movimientos residenciales y la productividad ambiental primaria (Kelly, 1995:124).

Más recientemente, Binford (2001) observó a partir de datos etnográficos que efectivamente los recursos acuáticos funcionan generalmente como un factor forzante en varios aspectos de la organización socio-espacial de los cazadores recolectores. De hecho, al referirse a la intensificación como un camino posible hacia sociedades de mayor escala, Binford señala que

“if intensification is indicated by a shift in exploitation from one type of biotic community to another, the shift will usually by to aquatic resources and rarely, if ever, to terrestrial animals.” y agrega que “in environments in which the resources mix permits intensification, the preferred strategy of human actors experiencing subsistence stress will be increased dependence upon terrestrial plants. Human dependence upon aquatic resources occurs either as a supplement to a plant based strategy or as a primary strategy in environments that prohibits plant based subsistence options” (Binford 2001:210).

Existen un gran número de ejemplos en el mundo en los que las ocupaciones de áreas costeras devinieron en grupos cazadores recolectores llamados complejos, opulentos o de gran escala (Bailey y Milner 2002). Tal vez el ejemplo más paradigmático son los desarrollos observados en la costa noroccidental de Norteamérica, aunque existen otros (e.g. costa peruana, sambaquies en Brasil, mesolítico en Escandinavia, entre otros). La costa noroccidental norteamericana fue caracterizada como uno de los pocos lugares en el mundo que permiten observar desarrollos a largo plazo de grupos cazadores recolectores marineros. Se observó que los grupos costeros del Holoceno inicial en California meridional tendían a enfatizar la explotación de mariscos y semillas duras (al menos durante el periodo comprendido entre 9000 y 7000 AP); en el centro y norte de la Costa del Noroeste los pueblos marítimos capturaban peces pelágicos y anádromos, mamíferos marinos y animales terrestres (Erlandson 1994, 2001). Para momentos tardíos se observó un fuerte énfasis en los recursos marinos, sobre todo a partir de la pesca masiva del salmón. Esto se vio acompañado por un incremento poblacional de los grupos, la disminución de la movilidad y el surgimiento de “sociedades complejas” (Ames, 1994). Los etnógrafos caracterizaron a estas poblaciones como poseedoras de jerarquías sociales hereditarias, poblaciones densas, aldeas sedentarias, propiedad individual o privada de los recursos productivos, acceso diferencial a la riqueza, cierto nivel de especialización artesanal, guerra endémica y esclavitud, entre otras (Lightfoot, 1993:177).
Podría pensarse *a priori* que el surgimiento de la complejidad en los cazadores recolectores en la costa del Pacífico, estuvo directamente vinculado a la "riqueza" general del ambiente en cuanto a la cantidad y calidad de los recursos (por ejemplo, los salmones). Sin embargo, como señala Lightfoot (1993) existe una gran diferencia temporal entre las primeras economías costeras del Pacífico y la evidencia "buena" de complejidad sociopolítica que en algunas áreas se encuentra en el orden de 9400 a 5000 años. El modelo explicativo más común considera que el crecimiento demográfico y las estrategias de intensificación en la subsistencia habrían sido los factores primordiales para que se redujeran los rangos de acción y para que surgieran comunidades sedentarias y economías de almacenamiento (Cohen 1977).

Aun así, no todos los grupos cazadores recolectores que desarrollaron adaptaciones costeras transitaron un proceso de reducción de movilidad, aumento poblacional y complejidad social. Los estudios desarrollados en los canales fueguinos (específicamente en el área del canal Beagle) mostraron que aún con una clara señal marina no se observaron reducción de la movilidad, incremento poblacional y mucho menos conductas complejas (i.e. jerarquía heredada, desigualdad social institucionalizada, etc.) (Zangrando 2009b). Los canoeros del Canal Beagle, en Tierra del Fuego disponían de embarcaciones que les permitieron explotar una gran variedad de recursos marinos (de forma similar a lo observado en la costa noroccidental). Asimismo, también se observó un fuerte énfasis en la pesca, sobre todo durante los últimos 1500 años AP, proceso que fue estudiado en términos de intensificación (Zangrando 2009a). Aun así, no se documentaron evidencias de "complejidad", ni arqueológicas ni etnográficas (ver Zangrando 2009b).

Este es uno de los múltiples ejemplos que son indicativos de una mayor variabilidad en los procesos evolutivos de sociedades cazadoras recolectoras pescadoras. No en todos los casos el consumo sistemático e intensivo de alimentos marinos (peces en particular) resulta en iguales patrones adaptativos, por lo que cada caso debe ser analizado dentro de su propio contexto.
ANTECEDENTES AMBIENTALES

2.1 Introducción

En este capítulo se presenta una breve descripción de la historia ambiental de la costa del Golfo San Matías. Se caracteriza la distribución espacial de los principales recursos físicos y biológicos, focalizando en aquellos vinculados a la práctica pesquera. Asimismo se reúnen los antecedentes más relevantes acerca de los cambios ambientales ocurridos en la costa rionegrina, el ambiente continental y oceánico circundante durante el Holoceno.

2.2 La costa rionegrina: un marco ambiental

La costa rionegrina se extiende por más de 300 km lineales desde la desembocadura del Río Negro, límite con la provincia de Buenos Aires (41° 02’ 46,41” S 62° 47’ 19,64” O) hasta Puerto Lobos, límite con la provincia de Chubut (42° 00’ 00” S 65° 04’ 06,31” S), abarcando gran parte del Golfo San Matías. El Golfo San Matías, el más septentrional de los golfos argentinos, constituye una cuenca de particulares características en el contexto del litoral marítimo de la región. Además de ser el golfo más extenso del sistema (alcanza una superficie aproximada de 19.700 Km²), presenta en su área central profundidades máximas que rondan los 180-200 m, que le confieren una morfología tipo “cuenco”. Al este, se comunica con las aguas de la Plataforma Continental Argentina por una boca de 117 km de ancho (Capitoli 1973).

Figura 2.1. Mapa costa rionegrina del Golfo San Matías. Se observa la batimetría del golfo y el frente termohalino desarrollado durante los meses de verano (Tomado con modificaciones de Romero et al. 2013:75).

Figura 2.1. Mapa costa rionegrina del Golfo San Matías. Se observa la batimetría del golfo y el frente termohalino desarrollado durante los meses de verano (Tomado con modificaciones de Romero et al. 2013:75).
El Golfo San Matías se presenta entonces como una cuenca semi-cerrada en la que el régimen de mareas y las corrientes gravitan en gran medida sobre el sistema general de circulación de las masas de agua. Las mareas tienen un régimen semi-diurno, con alturas variables que van entre los 3,20 m (desembocadura del Río Negro) y los 7,10 m (Bahía San Antonio) (González et al. 2010). Una de las características oceanográficas más destacadas del golfo es la formación de un sistema frontal durante los meses de primavera-verano, que separa el golfo en dos masas de agua: en el norte, más cálida y más salina y en el sur, más fría y menos salina (Tonini 2010). Normalmente, densas acumulaciones de plancton que ocurren en las áreas frontales generan agregaciones de peces, aves, mamíferos marinos y en consecuencia la presencia también de numerosos buques de pesca. La circulación general está dominada por un intenso giro ciclónico (compuesto de dos giros de recirculación). Como resultado de esta circulación cerrada, en verano el Golfo se halla prácticamente aislado de la plataforma externa (Tonini 2010:6) (Figura 2.1).

A lo largo de su extensión, el litoral rionegrino presenta ambientes correspondientes principalmente a la ecorregión del Monte distrito sur, con dominio de la estepa arbustiva (Cabrera y Willink 1980, Roig et al. 2009). La región se caracteriza por poseer un clima templado semiárido, con una temperatura media de unos 12ºC y precipitaciones medias que van entre los 100 y los 350 mm anuales (Olivares y Sisul 2005). Las tendencias climáticas muestran que en la costa Norte, entre el balneario El Cóndor y la Caleta de los Loros, se dio un incremento de las lluvias en los últimos cinco años, cercano a los 400 mm anuales. Por su parte en la costa Oeste (entre San Antonio Oeste y Arroyo Verde) se observan valores bajos con un promedio anual menor a 250 mm (Olivares y Sisul 2005). En el área los vientos predominantes soplan del cuadrante oeste (NO y O) lo hacen con mayor intensidad entre septiembre y enero (González et al. 2010).

2.3 Paleoambientes

Estudios recientes plantearon que la formación del GSM y del resto de los Golfos norpatagónicos se habría dado hace aproximadamente 12000 años AP calibrados, como consecuencia de ingresiones marinas que inundaron antiguas cuencas endorreicas (Ponce et al. 2011:374).
Durante el Holoceno, se observaron cambios en los ambientes del GSM, principalmente relacionados a variaciones en la línea de costa (ver Schellmann y Radtke 2010, Favier Dubois y Kokot 2011; Kokot y Favier Dubois 2010; Fucks et al. 2011; Isla 2013). Centrándonos en el Holoceno, los datos actuales sugieren que durante el máximo transgresivo del Holoceno medio (ca. 7400 a 6600 cal AP) el nivel marino fue de 2 a 3 metros superior al actual. Asimismo se documentaron dos eventos de descenso abrupto del nivel del mar (aprox. 1 metro), el primero entre los ca. 6600-6400 años cal AP y el segundo entre los ca. 2300-2050 años cal AP (Schellmann y Radtke 2010).

Por otra parte, distintos trabajos mostraron que en torno al óptimo climático (según Prevosti et al. 2004 desde ca. 7000 AP a ca. 4000 AP) las temperaturas superficiales del mar fueron ligeramente superiores a las actuales y la salinidad fue menor para el área costera bonaerense y patagónica (Aguirre 1993, 1995, 2001, 2002; Aguirre y Whatley 1995; Aguirre et al. 2002). Esto concuerda con lo observado por Bernasconi y Cusminsly (2009) para el Golfo Nuevo, en donde a partir del análisis de los foraminíferos registran una progresiva disminución de los niveles de oxígeno durante el Holoceno Medio (ca. 7700 años AP) posiblemente vinculados con temperaturas superficiales más altas y menor salinidad.

Por su parte los valores isotópicos (δ¹⁸O) obtenidos por Favier Dubois et al., (2009) en valvas de Mytilus de la costa norte del GSM mostraron una disminución en la temperatura media del agua marina desde 4000 años AP hasta el presente. Una tendencia opuesta se observa en el caso de la curva de valores de δ¹³C, lo que tiene sentido, ya que indica una mayor productividad marina en momentos de temperatura elevada (valores enriquecidos) y su disminución cuando esta desciende, hacia el Holoceno tardío final. El período de mayor temperatura del agua marina, podría hallarse vinculado con condiciones áridas en áreas continentales adyacentes. En este sentido, Garleff et al. (1994) presentaron evidencias para el Norte de la Patagonia, de condiciones muy secas desde el Holoceno Temprano hasta los 5000–4000 años A.P. seguidas por una transición hacia condiciones semiáridas dado por un aumento en las precipitaciones (Garleff et al. 1994).

Pese a que en la actualidad la información paleoclimática existente para el noroeste de Patagonia es escasa, la bibliografía (Schäbitz 1994, 2003; Martínez y Martínez 2011; Marcos et al. 2011) sugiere algunas tendencias generales en las áreas continentales. Se sugirió para momentos del Holoceno medio (ca. 7500 hasta 4000/3000 años AP) momentos de gran aridez, seguidos por un aumento relativo de la humedad con eventos áridos/semiáridos hasta los ca. 1000 AP y finalmente el retorno a situaciones áridas en torno a los 400 AP.

El perfil polínico realizado en la localidad arqueológica Bajo de la Quinta (costa norte del GSM), mostró para el Holoceno medio (entre ca. 7600 y 4200 años AP) el predominio de taxones vinculados a sustratos salinos y arenosos, típicos de ambientes áridos (Figura 2.3) (ver también Marcos y Mancini 2012).
En concordancia a lo establecido por Schäbitz (1994) que observa un cambio de un clima árido a uno semiárido a partir de los 2500 años AP, el perfil polínico muestra que, para el periodo que va de 4200 a 1500 años calibrados AP, se produce un aumento de los grupos arbustivos y en los valores de las gramíneas, lo que puede relacionarse con condiciones más húmedas (Figura 2.3). Finalmente para el periodo que va entre los 1500 y los 603 años calibrados se observó un aumento de taxones que pueden asociarse a bordes de una laguna incipiente (Favier Dubois et al., 2011)

2.4 Distribución espacial y abundancia de recursos

Las áreas costeras tienen la ventaja de reunir en una pequeña porción de territorio recursos de distintas ecozonas. Podrían pensarse como ambientes ecotónales, en donde es posible explotar tanto recursos continentales como litorales y marinos (Yesner 1980). Aun así, no todos los espacios costeros presentan las mismas características en cuanto a distribución, abundancia y diversidad de recursos. Es por este motivo que se decidió segmentar la extensa costa rionegrina en dos grandes áreas, lo que favoreció además la logística y la operatividad de la investigaciones arqueológicas: el sector norte del golfo (entre el balneario El Cóndor y la Bahía San Antonio), en donde la línea de costa corre aproximadamente de E a O, y el sector oeste, en donde lo hace de N a S (desde la Bahía San Antonio y Puerto Lobos). Los trabajos desarrollados en el marco de los proyectos de investigación en el área y los realizados por otros investigadores mostraron marcadas diferencias geológicas, morfológicas, ecológicas y ambientales entre estos los dos tramos costeros (Borella et al., 2006). Esto habría determinado usos diferentes de estos espacios por parte de los grupos humanos a lo largo del
tiempo permitiendo plantear expectativas en cuanto a la evidencia arqueológica (Favier Dubois y Borella, 2011). A continuación se describen las principales características de ambos tramos de costa:

El litoral Norte se extiende desde la desembocadura del río Negro hasta la localidad de El Sótano. Se desarrolla sobre una antigua planicie fluvial disectada (representada por los “Rodados Patagónicos”), interrumpida por bajos como el Gran Bajo del Gualicho, el Bajo de Valcheta y el Bajo de San Antonio, entre otros menores (González Díaz y Malagnino 1984). Esta planicie elevada toma contacto con el mar en forma abrupta, generando una costa predominantemente acantilada de hasta 50-60 m de altura. La costa abrupta alterna con entrantes costeros correspondientes a bajos topográficos, como la Caleta de los Loros-Bahía Creek, el Bajo de la Quinta y el Bajo de San Antonio. Estos bajos constituyen vías privilegiadas de acceso al mar, y en ellos se desarrollan cordones de gravas, playas arenosas y campos de dunas. Ante la escasez de recursos hídricos superficiales (a excepción del río Negro), los campos de dunas representan los principales sectores de recarga de las precipitaciones (Olivares y Sisul 2005). Asimismo, esta costa presenta grandes extensiones de planicies litorales (150/120 metros aproximadamente), sobre la que se desarrolla una elevada concentración de moluscos y crustáceos (e.g. mejillín, mejillones, chologas, cangrejo rojo, cangrejo nadador, etc.) (Figura 2.4). En este tramo costero, se destacan la Caleta de los Loros y la Bahía San Antonio, que representan áreas de alta biodiversidad y elevada productividad primaria y secundaria en costas arenosas (en el caso de la Bahía San Antonio con un amplia y productiva planicie de marea, en donde además de las especies antes mencionadas se observan almejas púrpura y blanca, trotones y bocinas) (Fucks et al. 2011). Ambos sectores constituyen zonas de alimentación para gran cantidad de especies marinas y el lugar escogido por muchas de ellas para reproducción y cría (Perier 1994; Curtolo 2004; Fucks et al. 2011).

En este tramo costero se registraron al menos cuatro apostaderos de Otaria flavescens (lobo marino de un pelo) todos localizados en costas acantiladas: Punta Bermeja, Faro Belén, Caleta de los Loros y Punta Villarino (Svendsen et al. 2009). Los datos actuales para las áreas continentales anexas a la costa muestran que este tramo costero presenta una mayor productividad que la costa oeste y por lo tanto posee mayor capacidad de carga (Bassi et al. 2009).
Por su parte el litoral Oeste del Golfo se destaca la presencia de la meseta del Somuncurá (planicie estructural lávica), que desciende hacia el mar gradualmente (González Díaz y Malagnino 1984). Ello da lugar a una costa de tipo tendido, que se desarrolla aproximadamente desde El Sótano hasta Punta Sierra, donde comienzan a aflorar rocas plegadas y falladas (Sierra Grande) generando un tramo costero más abrupto y recortado que se extiende hasta Puerto Lobos, (límite con la provincia del Chubut). La morfología costera es poco variable en todo este recorrido, con un amplio predominio de planicies litorales de rocas sedimentarias (calizas), por lo general muy extensas, triplicando al menos la extensión que presentan en la costa Norte (Orensanz et al. 1973). A partir de Punta Sierra la línea de costa se hace muy irregular por la presencia predominante de rocas ígneas y metamórficas. Aun así, este último tramo costero se halla interrumpido en algunos sectores por pequeñas áreas con playas arenosas y dunas, como los estuarios de los arroyos Salado y Verde. A lo largo de toda la costa Oeste se observan con frecuencia cordones de grava o de conchillas, aunque los depósitos eólicos son muy escasos (Figura 2.5) (Favier Dubois y Borella 2011:18-19).

Figura 2.5. Imágenes costa oeste del Golfo San Matías. A la derecha se presenta una vista de la plataforma de abrasión rocosa típica de este tramo costero. A la izquierda se observan el cordón de dunas litorales y la playa actual.

Pese a la mayor homogeneidad de este tramo costero, existen espacios con características únicas, tanto en su fisiografía como por las frecuencias y diversidad de recursos bióticos y abióticos. Se destacan las áreas del Islote Lobos, Punta Pörfdio (afioramiento de rocas volcánicas) y Punta Odriozola. Este sector litoral presenta una gran diversidad de especies, entre las que se destacan apostaderos reproductivos de lobos marinos de un pelo, un pequeño apostadero de lobos de dos pelos y una pinguinera en el Islote Lobos, y otro apostadero reproductivo de Otaria flavescens en Punta Odriozola (Svendsen et al. 2009).

2.4.1 Los recursos marinos y costeros

Las características físicas y ambientales propias del Golfo resultan en condiciones ecológicas únicas dentro del sistema marino argentino, que se expresa en una gran biodiversidad de recursos marinos y litorales (Di Giácomo et al. 2005, González et al. 2010). Esto sumado a que las aguas del golfo funcionan como transición entre las dos provincias biogeográficas marinas (Bonaerense y Magallánica) le confiere una gran riqueza específica adicional. Algunas de estas especies desarrollan la totalidad de su ciclo vital dentro de esta cuenca semi-cerrada, constituyendo sub-poblaciones independientes de las presentes en la plataforma continental, como por ejemplo la merluza común, el salmón de mar, el
mero, el pez gallo, e invertebrados como la vieira, el mejillón, la almeja púrpura y el pulpito tehuelche (González et al. 2010).

La biodiversidad marina incluye al menos 257 especies de invertebrados, 131 especies de moluscos, 94 especies de peces, 198 de aves y 24 de mamíferos marinos (3 de pinnípedos y 18 de cetáceos) (González et al. 2010). La variabilidad y riqueza observada se debe entre otras cuestiones a la disponibilidad de macrohabitats en los diferentes espacios costeros (Di Giácomo et al. 2005) y a las propias características del golfo (ver más arriba). De la totalidad de biomasa marina disponible en el golfo, desde el punto de vista arqueológico se destacan la chorga (*Aulacomya atra*), el mejillón (*Mytilus edulis platensis*), la vieira tehuelche (*Aequipecten tehuelchus*), los pulpitos (*Octopus tehuelchus*) y (*Eledone massyae*). Asimismo entre las aves se destacan el pingüino de Magallanes (*Spheniscus magellanicus*) (ver Borella y Cruz 2012), cormorán (*Phalacrocorax olivaceus*) y la gaviota cocinera (*Larus dominicanus*). Finalmente, entre los mamíferos marinos hay que mencionar al elefante marino del sur (*Mirounga leonine*), el lobo marino de un pelo (*Otaria flavescens*), el lobo de dos pelos sudamericano (*Arctocephalus australis*), varios delfines como el delfín común (*Delphinus delphis*), la tonina o delfín nariz de botella (*Tursiops truncatus*), las orcas (*Orcinus orca*) y la ballena franca austral (*Eubalaena australis*) (González et al. 2010).

2.4.2 Hábitats para la pesca y recursos ictícicos

Los peces que habitan el GSM y el mar en general no se hallan uniformemente distribuidos. Del conjunto de especies presentes en las aguas de la región sólo una porción habita cada sitio de acuerdo a las ofertas y limitaciones que brinda el ambiente. Por ejemplo, dado que la asociación entre fauna ictica y las características del fondo es muy estrecha (Irigoyen y Galvan 2010:11), deberíamos esperar distintas especies en ambientes con fondos blandos (fangos, limos, arena), respecto a ambientes con fondos rocosos (arrecifes). Los arrecifes templados (como se conocen a los fondos rocosos en ambientes templados como el patagónico) sostienen una gran biomasa y presentan una alta proporción de peces de gran tamaño corporal. Los arrecifes templados como los presentes en la costa del GSM, no presentan una gran riqueza de especies y raramente superan la decena.

La fauna ictica costera en el Golfo está compuesta al menos por treinta especies de peces, agrupadas en diez órdenes (Tabla 2.1) (Perier 1994; González et al. 2010).
<table>
<thead>
<tr>
<th>Orden</th>
<th>Familia</th>
<th>Especie</th>
<th>Nombre Vulgar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anguilliformes</td>
<td>Congridae</td>
<td>Conger orbignyanus</td>
<td>Congrio</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Odontesthes nigricans</td>
<td>Pejerrey</td>
</tr>
<tr>
<td>Atheriniforme</td>
<td>Atherinidae</td>
<td>Odontesthes argentinitensis</td>
<td>Pejerrey</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Odontesthes smithi</td>
<td>Pejerrey</td>
</tr>
<tr>
<td>Gadiformes</td>
<td>Moridae</td>
<td>Salloitis australis</td>
<td>Bacalao Criollo</td>
</tr>
<tr>
<td>Batrachoidiforme</td>
<td>Batrachoididae</td>
<td>Porichthys porosissimus</td>
<td>Lucerna (A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Triathalassothis argentina</td>
<td>Pez Piedra</td>
</tr>
<tr>
<td>Clupeiforme</td>
<td>Engraulidae</td>
<td>Engraulis anchoita</td>
<td>Anchoita</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anchoa marina</td>
<td>Anchoa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brevoortia aurea</td>
<td>Lacha/Saraca</td>
</tr>
<tr>
<td>Chimaeriforme</td>
<td>Callorhinidae</td>
<td>Callorhynchus callorhynchus</td>
<td>Pez Gallo</td>
</tr>
<tr>
<td>Mugiliforme</td>
<td>Mugilidae</td>
<td>Mugil sp.</td>
<td>Lisa</td>
</tr>
<tr>
<td>Myliobatiforme</td>
<td>Myliobatidae</td>
<td>Myliobatis goodei</td>
<td>Chuco</td>
</tr>
<tr>
<td></td>
<td>Carangidae</td>
<td>Trachurus lathami</td>
<td>Jurel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seriola lalandi</td>
<td>Poz Limón</td>
</tr>
<tr>
<td></td>
<td>Clinidae</td>
<td>Reiberocinus eigenmanni</td>
<td>Clinido (A)</td>
</tr>
<tr>
<td></td>
<td>Eleginopidae</td>
<td>Eleginops maclovinus</td>
<td>Róbalo (A)</td>
</tr>
<tr>
<td></td>
<td>Incertae sedis</td>
<td>Acanthistius patachonicus</td>
<td>Mero (A)</td>
</tr>
<tr>
<td></td>
<td>Nototheniida</td>
<td>Patagonotothen sima</td>
<td>Nototenas</td>
</tr>
<tr>
<td></td>
<td>Percophidae</td>
<td>Percophis brasiliensis</td>
<td>Pez Palo</td>
</tr>
<tr>
<td></td>
<td>Pinguipedida</td>
<td>Pseudopercis semifasciata</td>
<td>Salmón de Mar (A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pinguipes brasilius</td>
<td>Turco (A)</td>
</tr>
<tr>
<td></td>
<td>Pomatomidae</td>
<td>Pomatomus saltatrix</td>
<td>Anchoa de Banco (A)</td>
</tr>
<tr>
<td></td>
<td>Sciaenidae</td>
<td>Umbrina canosa</td>
<td>Pargo Blanco</td>
</tr>
<tr>
<td></td>
<td>Serranidae</td>
<td>Polyprion americanus</td>
<td>Cherrnia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dules auriga</td>
<td>Chocherito (A)</td>
</tr>
<tr>
<td></td>
<td>Sparidae</td>
<td>Sparus pagrus</td>
<td>Besugo (A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diplodus argenteus</td>
<td>Sargo (A)</td>
</tr>
<tr>
<td></td>
<td>Trichiuridae</td>
<td>Scomber japonicus marplatensis</td>
<td>Caballa</td>
</tr>
<tr>
<td>Pleuronectiforme</td>
<td>Paralichthyida</td>
<td>Paralichthys sp.</td>
<td>Lenguado</td>
</tr>
<tr>
<td></td>
<td>Pleuronectida</td>
<td>Oncopterus Darwini</td>
<td>Lenguado</td>
</tr>
<tr>
<td>Scorpinaiforme</td>
<td>Congiopodidae</td>
<td>Congiopus peruvianus</td>
<td>Cacique</td>
</tr>
<tr>
<td></td>
<td>Sebastidae</td>
<td>Sebastes Oculatus</td>
<td>Escófalo</td>
</tr>
<tr>
<td></td>
<td>Agonidae</td>
<td>Agnopsis chiloensis</td>
<td>Acorazadito</td>
</tr>
</tbody>
</table>

Tabla 2.1. Clasificación en Orden, Familia, Especie y Nombre común de la fauna íctica costera en el Golfo San Matías. La corvina rubia (*Micropogonias furnieri*) no fue incluida en esta tabla debido a que en la actualidad no se observa habitualmente en las aguas del Golfo (Tomado de Perier, 1994; Irigoyen y Galván, 2010 con modificaciones).

Como ya fue señalado en otros trabajos, los ambientes costeros constituyen espacios de reproducción, refugio, alimentación y/o cría de numerosas especies de peces (Deegan 1990). Esto es particularmente visible en ambientes costeros protegidos (bahías, caletas, estuarios) aunque también se da en otros ambientes costeros en donde se reúnen las condiciones necesarias (disponibilidad de alimentos y protección contra los depredadores).
En líneas generales y siguiendo los planteos de Ringelet y Arámburu (1960) y Menni (1983), los peces que habitan la faja costera del Golfo San Matías pueden ser caracterizados como peces neríticos. Esto implica que son “peces que habitan en aguas calmas y templadas, más bien estenotermos, en la masa de agua nerítica de la plataforma continental. Son peces de talla media, pocas veces mayores de medio metro (una notoria excepción son ciertas corvinas) y todos o en inmensa mayoría son teleostomos. Tienen coloración en la gama del rojo o gris plateado. Son de hábitos gregarios y se congregan en bancos; demuestran poca voracidad y depositan huevos pelágicos o flotantes” (Menni 1983:21-23).

2.4.3 Aspectos ecológicos de las principales especies

Presentamos a continuación los aspectos ecológicos, etológicos y estructurales de los principales recursos ícticos del GSM que permitan generar expectativas para estudiar el consumo y las formas de obtención de los peces en el pasado.

Sargo (*Diplodus argenteus*)

Es una especie asociada a los sustratos duros que habita aguas claras, costeras y entre mareas. Los juveniles suelen formar pequeños cardúmenes, en cambio los adultos tienen hábitos más bien solitarios (Cousseau y Perrotta 2004), aumentando su número hacia el inicio del otoño en las aguas costeras del GSM. Durante la fase reproductiva (septiembre a diciembre) los juveniles pueden presentarse en densos cardúmenes visibles desde la costa de la Bahía San Antonio (Perier 1994). Los adultos pueden alcanzar en la costa argentina los 30 cm de talla y alrededor de los 800 g de peso (Figura 2.6).

![Figura 2.6. Diplodus argenteus -tomado con modificaciones de fishbase.com](#)

Corvina Rubia (*Micropogonias furnieri*)

Los adultos de corvina rubia son frecuentadores de fondos blandos (arenosos y/o limosos), se alimentan principalmente de organismos bentónicos (poliquetos, bivalvos, caracoles, camarones, otros crustáceos pequeños) y en menor medida de pequeños peces, como anchovita y anchoa. Viven en áreas de la plataforma continental de profundidades cercanas a los 50 m, pero en la época reproductiva (primavera–verano) se acercan a desovar a la costa. Por su parte las larvas y juveniles se desarrollan en áreas someras, e incluso penetran en rías, arroyos y

1 Estenotermos: viven en estrechos márgenes de temperatura.
lagunas que desembocan en el mar, hallando refugio y alimento (Cousseau y Perrota 2004).

En líneas generales las corvinas rubias se agrupan en aguas poco profundas (menores a 10 m) en épocas y lugares determinados y en forma de densos cardúmenes. Esto lo trasforma en un recurso muy predecible y que puede ser capturado en grandes números a partir de técnicas de pesca comunales (e.g. redes, trasmallos, trampas, etc.).

Figura 2.7. Micropogonias furnieri -tomado con modificaciones de fishbase.com

Mero (Acanthistius patachonicus)

Es una especie frecuentadora de fondos duros (en profundidades que no superan los 100 m), aunque puede hallarse en fondos blandos eventualmente. Los juveniles se encuentran en aguas litorales y en la medida que crecen, se van incorporando a zonas de aguas más profundas. Por su parte los adultos se acercan a la costa durante los momentos de reproducción desde noviembre a febrero (Cousseau y Perrota 2004).

La dieta está constituida principalmente por crustáceos (cangrejos) y por moluscos (bivalvos y pequeños cefalópodos) y en menor medida por peces. Las tallas máximas registradas están cercanas a los 61 cm. En el GSM se distribuye en toda la cuenca. Las mayores concentraciones se registran en la zona sur del golfo. Juveniles y adultos longevos se localizan en aguas someras de las zonas costeras, en fondos rocosos (González et al. 2010).

Figura 2.8. Acanthistius patachonicus -tomado con modificaciones de fishbase.com
Róbalo (*Eleginops maclovinus*)

Es un pez bentónico que se encuentra presente siempre en aguas de poca profundidad y en ocasiones incursiona en estuarios y ríos. Se alimenta principalmente de peces e invertebrados bentónicos (poliquetos y pequeños crustáceos) (Cousseau y Perrota 2004). Los juveniles son generalmente observados sólo o en grupos que no superan los tres o cuatro individuos. Se encuentran en canales de marea asociados a refugios de algas o confundidos cripticamente con los fondos de piedras pequeñas y pueden ser fácilmente capturados mediante el uso de redes playeras. Los adultos en cambio, se encuentran asociados a fondos de restingas que ofrecen oquedades (utilizadas como refugios permanentes durante la primavera y el verano) (Perier 1994:33). Durante el otoño-invierno, momento en el que se halla el pico de actividad reproductiva, se puede observar una conducta gregaria entre los ejemplares adultos de esta especie y se encuentran en las aguas de la Bahía San Antonio y su área de influencia formando densos cardúmenes (Perier 1994). La talla máxima registrada en la Bahía de San Antonio (BSA) fue de 620 mm de largo total para una hembra. La edad máxima registrada para la Bahía fue de 5 años para ambos sexos (González et al. 2010).

![Róbalo (*Eleginops maclovinus*)](https://www.fishbase.com)

Lenguado (*Paralichthys* sp.)

Presente desde el estado de Río de Janeiro, en Brasil, hasta la zona norte del Golfo San Matías en Argentina. Es considerada una especie eurihalina ya que habita desde ambientes de baja salinidad, como la Laguna de los Patos en Brasil, Bahía Samborombón y Mar Chiquita en Argentina hasta ambientes de alta salinidad. Puede ser hallado hasta profundidades no mayores a 20 m. En la Bahía de San Antonio, Río Negro, se registraron ejemplares de hasta 50 cm de largo total mientras que en la desembocadura del río Negro se capturaron ejemplares incluso mayores (Perier 1994).

Es un predador activo que se alimenta principalmente de crustáceos y peces. Sus principales presas en la BSA son los cangrejos *Neohelice granulata* y *Cyrtograpsus angulatus*. En la zona externa de la bahía se alimenta también de sargo, róbalo y pejerreyes. Sus predadores son lobos marinos y tiburones.
Pejerrey (*Odontesthes* sp.)

Está presente desde el Sur de Brasil hasta Rawson en Argentina, en aguas muy costeras. Es una especie adaptada a variaciones muy pronunciadas de salinidad y temperatura. En la BSA y su zona de influencia se encuentra presente entre octubre y abril. Los especímenes de mayor tamaño registrados en la BSA llegan a superar los 35 cm. A fines de verano se observan juveniles de hasta 10 cm de largo total.

Son principalmente carcinófagos y sus principales presas en el área son los cangrejos *Neohelice granulata* y otros crustáceos bentónicos (*Serolis* sp.). Son sus predadores los lobos marinos, aves marinas y otros peces.

Lucerna (*Porichthys porosissimus*)

Se distribuye desde la provincia de Espíritu Santo, Brasil (20° S) hasta el norte de Patagonia, Argentina (43° S). Habita fondos arenosos y fangosos en aguas profundas (hasta los 200 m) y durante el verano busca arrecifes rocosos costeros para reproducirse. Luego de que los juveniles migran hacia aguas profundas los machos mueren por lo que es frecuente encontrarlos masivamente en ciertas playas cuando se retira la marea. Su talla máxima puede alcanzar los 30 cm (Irigoyen y Galvan 2010).
Figura 2.12. *Porichthys porosissimus* -tomado con modificaciones de fishbase.com
3.1 Imagen etnohistórica de la costa patagónica

En este capítulo se presentan brevemente algunas pautas referentes a la subsistencia, movilidad y demografía de los grupos cazadores recolectores de la costa norpatagónica durante el período de contacto con los europeos. Nos interesa indagar cómo a partir de estas fuentes se pueden generar expectativas contrastables con el registro arqueológico en el área de estudio. Son escasas las observaciones que nos llegaron de los primeros momentos de contacto y proveen una fuente de información muy discontinua y poco detallada. Las primeras menciones referidas a la subsistencia de los grupos cazadores recolectores surgen de las menciones realizadas por los viajeros del siglo XVI (Transilvano, Pigafetta, Sarmiento de Gamboa, entre otros). Estas primeras visitas a las costas patagónicas se realizaron mediante expediciones navales que incluyeron desembarcos en distintos puntos del litoral, aunque siempre en sectores al sur del paralelo 44° (Moreno, 2003), es decir al sur del área del Golfo San Matías. Producto de estas maniobras se produjeron algunos contactos con los nativos, pero siempre en forma esporádica y con acercamientos de muy corta duración que se limitaron a dos tramos de la costa patagónica (Costa de Santa Cruz y Costa del Estrecho de Magallanes). Estos espacios fueron visitados durante las expediciones de Magallanes (1519) y de Drake (1577). La información obtenida por estos viajeros sirve como base para la construcción de la forma de subsistencia aborigen durante los siglos XVI y XVII, pero únicamente para el sector meridional de la costa atlántica. De la lectura de las fuentes se observan claramente la explotación de guanaco, el choique, los pingüinos y los moluscos, aunque nada se menciona del consumo de peces y mamíferos marinos para ese entonces (ver Moreno, 2003; Cruz et al., 2004).

A diferencia de los momentos previos, para los siglos XVIII y XIX existe una gran cantidad de fuentes escritas con excelentes relatos de la vida de los nativos. Los hermanos Viedma realizaron observaciones minuciosas y prolongadas en el tiempo. Antonio Viedma, refiriéndose a la subsistencia de los aborígenes, señaló que:

“La caza y la pesca son las mismas que en aquel destino, pero los indios no aprovechan la pesca, porque ignoran el modo de tomarla, y carecen de instrumentos para hacerla. En la Ensenada que llaman de Camarones, hay abundancia de estos, y también en San Julián y Puerto Deseado, y algún pez de los llamados gallo: pero ninguna de estas especies las aprovechan los indios, como queda dicho. (...) Abunda este terreno de liebres, que son a semejanzas de pequeños corzos, de muy buena carne para comer: quirquinchos también de buena carne, cuya concha sirve a los indios de tartera o plato: leones pardos, cuya carne también es muy regalada, jugosa y tierna, y se asemeja asada a la pechuga de pavo: hay asimismo algunos guanacos, algunas perdices y muchos avestruces. De todas estas especies se mantienen los indios, y de carne de
Bien entrado el siglo XIX, misioneros y viajeros europeos recorrieron distintos sectores de la Patagonia y se instalaron durante períodos prolongados junto a poblaciones indígenas entre otros; d’Orbigny, Schmid y Musters. La explotación aborigen de recursos acuáticos sigue estando casi ausente en los relatos, lo cual llamó la atención de los viajeros en más de una oportunidad Musters (1964: 187 [1869]) señaló: “Pero los indios, con excepción de Casimiro, no comían pescado, y al parecer me velan saborearlo con los mismos ojos con que el inglés mirara a primera vista la afición de ellos a la sangre”. Si bien Schmid también destacó que los aborígenes no consumían peces, no descartó el consumo de moluscos: “Nunca comen pescado, así sea el mejor salmón, pero sí ostras y mejillones como variación” (Schmid, 1964: 177 [1859]). Por su parte, d’Orbigny señaló:

“Los patagones carecen de toda aptitud para la pesca; así se contentan con apoderarse de los peces que el azar pone a su alcance, sin utilizar la red ni otro procedimiento: bien distinto en eso de los habitantes de Tierra del Fuego que son especialmente pescadores. Es cierto que los patagones sólo momentáneamente van a orillas del mar y no han podido perfeccionar ese arte, siendo la caza todo para ellos.” (d’Orbigny, 1945: 708 [1826-1833]).

No hay que olvidar que durante los siglos XVIII y XIX los grupos aborígenes de Patagonia adquirieron una gran movilidad con la incorporación del caballo, lo que produjo cambios profundos en su organización social y económica. Esto favoreció que se desarrollaran contactos muy fluidos con distintos representantes de la sociedad occidental (ver Nacuzzi, 1998). En definitiva entonces, los datos de las crónicas -más abundantes para la costa Patagónica durante este último periodo- han entregado una imagen de grupos cazadores recolectores con amplios rangos de acción debido al uso del caballo, donde los espacios costeros habían sido virtualmente abandonados y los recursos marinos muy poco aprovechados.

En síntesis, como ya fue ampliamente discutido, las condiciones que ofrece la imagen etnográfica para la elaboración de hipótesis y modelos arqueológicos deben ser usadas con precaución (David y Kramer, 2001; entre muchos otros). La información histórica disponible para los siglos XVI y XVII, además de ser poco confiable, es insuficiente y está espacialmente sesgada (ver Moreno, 2008). Mientras que, los datos de los siglos XVIII y XIX si bien son más abundantes y confiables, no configuran un cuadro muy exacto del mundo cazador-recolector existente en momentos previos a la llegada de los europeos por tratarse ya de grupos ecestres (Nacuzzi, 1998). Aun así constituyen una valiosa fuente de datos a partir de la cual podemos plantear hipótesis para discutir la evidencia arqueológica y sensibilizarnos acerca de ciertas prácticas, conductas y aspectos de la vida cazadora-recolectora del pasado.

3.2 Antecedentes arqueológicos en el área

Las primeras investigaciones sistemáticas en el área corresponden a los trabajos llevados a cabo por el Dr. Marcelo Bórmida y equipo entre los años 1961 y 1964. Durante estos años se localizaron cerca de 70 sitios arqueológicos en la costa norpatagónica (desde Bahía San Blas, Buenos Aires, hasta Arroyo Salado, Río Negro). En concordancia con el marco teórico metodológico de la época, los esfuerzos realizados por Bórmida se concentraron principalmente en el estudio del
material lítico y en la definición de “industrias”. Sus trabajos en el área le permitieron definir las siguientes industrias o culturas: “el jabaliense”, “el puntarrubiense” y “el sanmatiense” (Bórmida, 1964). La cronología asignada a estas fue determinada a partir de la localización de los sitios en diferentes cotas correspondientes a terrazas marinas (Borella et al., 2004).

A partir del año 2004 y luego de 40 años sin investigaciones sistemáticas en el área, C. M. Favier Dubois y F. Borella iniciaron nuevos proyectos de investigación en la costa rionegrina (Borella et al., 2004). El principal objetivo de estos proyectos fue generar un nuevo cuerpo de datos arqueológicos, ambientales y cronológicos y, de esta manera, discutir el papel que el ambiente y los recursos costeros tuvieron en el modo de vida pasado de los grupos humanos en el área. Para llevar a cabo estos objetivos se planteó un abordaje metodológico desde la arqueología distribucional, focalizando en aspectos tafanómicos y geoarqueológicos (Favier Dubois et al., 2006; Favier Dubois y Borella, 2007). Como resultado de estos trabajos se localizaron y prospectaron más de 90 loci agrupados en más de 22 localidades arqueológicas a lo largo de la costa rionegrina (Favier Dubois et al., 2008). En su mayoría se trata de grandes acumulaciones de valvas (concheros), de diferentes características, ubicadas en depósitos eólicos litorales desarrollados sobre terrazas holocenas y pleistocenas. Estos concheros están compuestos principalmente por mítílidos asociados a tiestos cerámicos, artefactos líticos, círculos de guijarros termoalterados y restos óseos de variada fauna (mamíferos marinos y terrestres, aves, peces, etc.) (Borella et al., 2006). Estos conjuntos quedan expuestos o sepultados como resultado de la acción dinámica de los mantos eólicos, principalmente en terrazas marinas y holladas de deflación (Manzi et al., 2009). Otro rasgo destacado en el área son las dispersiones/concentraciones de material lítico en superficie, que en ocasiones aparecen asociadas con otolitos de corvina rubia (M. furnieri). El repertorio tecnológico del área se completa con la presencia de cáscaras de huevos de choique grabadas (Fiore y Borella, 2010), estudios sobre tecnología lítica tallada (Cardillo, 2013) y pulida (Orlando 2009), tecnología cerámica en contextos tardíos (Borges Vaz, 2013), tecnología ósea (Borella y Buc, 2009), así como la presencia de valvas modificadas (Deodat, 1967; Favier Dubois et al., 2008), aunque estos últimos artefactos se encuentran todavía en proceso de análisis más profundos.

Luego de 10 años de trabajo en la región tenemos un panorama de las principales características de la vida cazadora recolectora en el GSM durante el pasado (ver Favier Dubois et al., 2009) así como un robusto marco cronológico de las ocupaciones humanas (ver Favier Dubois, 2013). En el marco de los proyectos iniciados en 2004, se realizaron un gran número de trabajos en el área (más de 30) principalmente en aspectos vinculados a las tecnologías, a la subsistencia y al estudio de los escenarios ambientales donde vivieron estos grupos humanos (Favier Dubois et al., 2009; Cardillo, 2009; Borella et al., 2011; Favier Dubois y Kokot, 2011, Borella y Cardillo, 2012, entre otros). En conjunto, los datos sugieren el desarrollo de un sistema adaptativo costero basado en un gran conocimiento del área y los recursos disponibles (Favier Dubois et al. 2009).

En escala regional los trabajos muestran que las diferencias ambientales, estructurales y ecológicas entre las costas norte y oeste del GSM (ver Capítulo 2) se traducen en variaciones en cuanto a la frecuencia y diversidad de la señal arqueológica (Favier Dubois y Borella, 2011; Borella et al., 2011).
En la costa norte, se registró una gran variedad y diversidad de evidencia arqueológica desde el 6000 AP, que incluye desde datos zooarqueológicos, tecnológicos, bioarqueológicos hasta evidencia paleoambiental y paloedietaria (Favier Dubois et al., 2008; Favier Dubois et al., 2009). El análisis conjunto de esta evidencia permitió generar un modelo temporal acerca del uso humano de este tramo litoral. Este modelo propone que desde el inicio de la ocupación hasta los 2000 años AP los recursos marinos fueron intensamente consumidos (Favier Dubois et al., 2009). En correspondencia con esta tendencia se ha observado una gran frecuencia de restos de peces marinos (Scartascini et al., 2009; Borella et al., 2011), que se condice además con otras líneas de evidencia como ser las tecnologías asociadas (pesas de redes/líneas de pesca) (Scartascini y Cardillo, 2009; Scartascini, 2010, 2012). Posteriormente, un segundo momento (entre 2000-400 años AP) donde la señal isotópica indica un cambio hacia paleodieta mixta, que se corresponde con la incorporación de recursos de origen continental (Favier Dubois et al., 2009). El registro zooarqueológico muestra para este periodo una mayor presencia de recursos faunísticos terrestres, algunos de muy alto ranking económico (como el guanaco y los rehidae) (Marani y Borella, 2012; Marani, 2014 en preparación), a la vez que se observa la presencia de otros recursos marinos de menor ranking (por ejemplo peces de menor tamaño) (Borella et al., 2011; Scartascini, 2012). A partir de esto se propuso como hipótesis para estos momentos un proceso de diversificación en la dieta, acompañada por un crecimiento demográfico y circunscripción espacial de escala macroregional (Barrientos y Pérez, 2004: 189; Favier Dubois et al., 2009: 994; Gordón, 2011: 6; Martínez et al., 2013). Finalmente, con la llegada de los europeos y la incorporación del caballo la costa habría sido abandonada, generando el panorama descripto por las crónicas (ver más arriba).

La costa oeste del GSM, en cambio presenta una señal arqueológica más tenue y menos diversa. Las ocupaciones registradas hasta el momento se restringen al inicio del Holoceno tardío (ca. 3000 años AP) (Favier Dubois y Borella, 2011), existiendo sólo un fechado en el Holoceno medio (ca. 7400 años AP) en el sitio Arroyo Verde 1 (Gómez Otero, 2007). La “señal pesquera” observada en la costa norte no parece tener paralelos en este tramo del litoral del GSM, ni tampoco en ningún otro sector costero de Patagonia continental, en donde los hallazgos ictioarqueológicos son generalmente escasos y discontinuos (temporal y espacialmente) (Castro et al., 2008; Gómez Otero, 2007; Orquera y Gómez Otero, 2008). Aun así los análisis actualmente en curso en el área oeste, mostraron la explotación de una importante variedad de recursos marinos, entre los que se incluyen los peces, aunque en bajos porcentajes (Borella et al., 2011), y lobos marinos, además de guanacos (Borella y L´Heureux, 2013). Pese a esto, en el sitio Arroyo Verde 1 se recuperaron, entre otros recursos, una buena cantidad de restos de peces de tallas adultas asociados a valvas de mítílidos fechadas en el Holoceno medio (Gómez Otero, 2007). Las tendencias en la tecnología lítica para este sector costero mostraron que existe un amplio predominio de desechos de talla y una baja diversidad de clases artefactuales, lo que indicaría un uso menos intenso o variado en la costa oeste del GSM respecto de la norte (Lípari y Cardillo, 2010; Cardillo y Scartascini, 2011; Manzi et al., 2011).
3.3 El consumo de peces en áreas vecinas

3.3.1 Costa de Patagonia Central

A partir de la década de 1990 en la costa norte de Chubut, la Dra. Julieta Gómez Otero viene desarrollando un trabajo continuo y sistemático. Los resultados obtenidos a partir del registro arqueofaunístico, tecnológico y cronológico indican que el área fue utilizada por grupos cazadores recolectores relativamente móviles y de baja densidad poblacional desde el Holoceno medio (Gómez Otero y Novellino, 2010). Entre otros aspectos, sus investigaciones sugieren la explotación de un amplio rango de recursos terrestres (guanaco, plantas y animales pequeños) y marinos (moluscos, pinnípedos y, en menor medida, peces y aves marinas) durante buena parte del Holoceno (Gómez Otero, 2007; Gómez Otero et al., 2009, 2013a y b). La información proveniente de isótopos estables en los restos humanos hallados en el área mostró dietas predominantemente mixtas a lo largo del Holoceno medio (Gómez Otero et al., 2000; Gómez Otero et al., 2007). Para momentos del Holoceno tardío la señal isotópica sugiere el aprovechamiento más intensivo de recursos marinos de alto nivel trófico (por ejemplo pinnípedos) (Gómez Otero, 2007; Gómez Otero et al., 2007). Estudios recientes constataron el uso de peces en el área que se remite al Holoceno medio y continúa hasta la época del contacto con los europeos (Gómez Otero et al., 2013a y b; Svoboda y Gómez Otero, 2013). Esta moderada señal ictioarqueológica se encuentra a su vez acompañada por el registro de tecnologías vinculadas a la práctica pesquera: pesas líticas (Gómez Otero, 2007) y el hallazgo de un anzuelo de madera (Gómez Otero, 1996).

En la costa central del Golfo San Jorge (Chubut) se registró una elevada densidad de sitios costeros fechados en el Holoceno tardío, que muestran el predominio de recursos marinos (moluscos, lobos marinos y aves marinas) sobre los terrestres (Arrigoni et al., 2006). En Bahía Solano (al SE del Chubut) se documentó el hallazgo de gran cantidad de restos de peces en el sitio 3 T2 y la ausencia de tecnología especializada, lo que llevó a plantear a los autores la factibilidad de pesca en los piletones que se forman naturalmente en los bancos de restinga en ese litoral (Caviglia y Borrero, 1978). No obstante, en buena parte de la costa de Patagonia central el registro ictioarqueológico es escaso y fragmentario y sin embargo se han registrado unos pocos artefactos vinculados a la pesca como son las pesas líticas (Gómez Otero et al., 1999; Belardi, 2005).

Más al sur, en la costa norte de Santa Cruz, la Dra. A. Castro y colaboradores destacaron la recurrente presencia de recursos marinos en el registro arqueofaunístico, particularmente de lobos marinos, aves y moluscos. Los investigadores postulan un uso intensivo de la fauna marina en vinculación con artefactos especializados, a saber: arpones, “rompecráneos” y posibles pesas de redes de pesca (Moreno, 2008). Sin embargo, los restos de peces aparecen en el registro arqueológico en muy baja frecuencia (Castro et al., 2008; Castro et al., 2011; Hammond y Zubimendi, 2013). El único sitio en donde los peces parecen haber tenido mayor importancia, es el sitio Moreno (Moreno, 2008) donde se recuperaron restos de merluzas (*Merluccius hubbsi*), pejerreyes (*Odontesthes* sp.), toritos (*Bovychtis* sp.) y róbalos (*Eleginops maclovinus*) (Izeta, 1999). Por otra parte, la información paleodietaria disponible para el área se restringe al Holoceno tardío y muestra dietas predominantemente mixtas, lo que presupone un uso intenso pero no exclusivo de los ámbitos y recursos terrestres (Moreno et al.,
La muestra analizada entregó los valores más enriquecidos para el 15N, lo que sugiere un claro consumo de recursos marinos de altos niveles tróficos. Estos resultados contrastan con el registro arqueoafunístico de la Costa Norte de Santa Cruz, que está dominado por recursos marinos, lo cual condujo a los autores a considerar la hipótesis del uso estacional de la faja costera, la que ya había sido propuesta previamente por Moreno (2008).

Finalmente, para el extremo meridional de Santa Cruz hay que mencionar el sitio HST01AM, localizado en la margen norte de la Ría del Gallegos, donde la Dra. E. Mansur (2007) recuperó evidencias arqueológicas de 6 artefactos de forma discoidal junto a restos de peces, entre ellos merluza (Merluccius hubbsi), mero (Acanthistius brasiliensis), morena (Austrolycus laticinetus) y probablemente róbalo (Eleginops maclovinus). Si bien solo realiza una breve mención de las especies representadas en el sitio, sostiene que dicha evidencia “lleva a reconsiderar el rol de la pesca en tales contextos” (Mansur, 2007: 702).

En suma, si bien en gran parte de la costa atlántica patagónica existe suficiente evidencia de consumo de recursos marinos, los peces sólo aparecen mencionados en algunas de las localidades arqueológicas estudiadas. De hecho llama la atención su escasa representación en los conjuntos y la discontinuidad temporal y espacial de los hallazgos de peces en el registro arqueológico. Como fue sugerido por Moreno y coautores (2011), la exploración del registro arqueológico e isotópico costero en escala macroregional está mostrando variabilidad en la intensidad del consumo de recursos marinos y en las especies explotadas por las poblaciones cazadoras, recolectoras y pescadoras de Patagonia continental durante Holocene tardío. En cambio, la costa rionegrina del golfo San Matías registra la mayor intensidad de consumo de recursos marinos para la costa Patagónica continental (dietas marinas) (Favier Dubois et al., 2009), mientras que el sector al sur del río Santa Cruz refleja el menor consumo de estos recursos; la Costa Norte de Santa Cruz y la Costa Norte del Chubut se encuentran en una posición intermedia entre ambos sectores (Moreno et al., 2011: 274).

3.3.2 Costa sur de la provincia de Buenos Aires

En sus trabajos realizados en el área de transición entre el sur de la región pampeana y norpatagonia, Martínez y coautores (2009) registraron una fuerte señal isotópica relacionada con el consumo de peces fluviales durante el Holoceno tardío. Esta señal es consistente con la alta frecuencia de restos ictioarqueológicos registrados en el sitio “El Tigre”, que se localiza sobre la margen derecha del cauce abandonado del río Colorado Viejo y a pocos kilómetros de la costa atlántica (Martínez et al., 2005). Los autores destacan el predominio de taxones fluviales como la perca (Percichthys sp.), el pejerrey (Odontesthes hatcheri) y diferentes tipos de bagres (Diplomyidae o Trichomycterinae) y en menor medida de especies marinas representadas por la raya (Rajidae sp.) y la corvina (Sciaena sp.), la corvina rubia (Micropogonias furnieri), el bagre de mar (Genidens barbus) y el chucho (Myliobatis sp.) (Martínez et al., 2005:133, Stoessel 2012:165).

En los sitios ubicados más cerca de costa actual la señal de restos de peces marinos es algo más continua (Sanguinetti de Börnida, 1999; Sanguinetti de Börnida et al., 1999; Martínez y Figuerero Torres, 2000; Bayón et al., 2001). En la mayoría de estos contextos aparecieron representados restos de corvina rubia (M. furnieri), principalmente otolitos y vértebras, pero también otras especies marinas.
como el bagre de mar (Genidens barbus) y el chucho (Myliobatis sp.) (Sanguinetti de Bórmida, 1999; Sanguinetti de Bórmida et al., 1999; Aldazabal et al., 2007; Stoessel, 2012). Ya incluso desde el Holoceno medio se observó un fuerte énfasis en el consumo de recursos marinos, siendo los peces una parte importante de los conjuntos zooarqueológicos. Un ejemplo de esto es el sitio “Barrio Las Dunas” ubicado en las cercanías de la ciudad de Monte Hermoso, en donde los peces representan más del 50% de la frecuencia total (Bayón et al., 2012). Se destaca la presencia de corvina rubia (M. furnieri); bagre sapo (P. porostsisimus) y corvina negra (P. cromis), esta última es la mejor representada y la que presenta mayores tamaños (aprox. 15-20 kg) (Bayón et al., 2012). Sin embargo, una característica particular de todos estos sitios es la ausencia de evidencias tecnológicas que puedan ser vinculadas a la práctica pesquera (Martínez et al., 2005). Entonces, y de acuerdo a los resultados de las investigaciones en curso, se puede plantear que en el sur de la Provincia de Buenos Aires la explotación de peces parece estar vinculada a ambientes ribereños y costeros y es algo más continua temporal y espacialmente que lo observado en la costa de Patagonia central (Martínez et al., 2005, 2009; Martínez y Gutiérrez, 2004; Stoessel, 2011, 2012).

Para concluir podría decirse que tanto en la costa de Patagonia continental como en el área sur de la provincia de Buenos Aires el registro ictioarqueológico comienza a mostrar una señal relativamente destacada, sobre todo durante la parte final del Holoceno tardío (Stoessel, 2011, 2012; Gómez Otero et al., 2013). Aun así, todavía existen grandes áreas en donde la información es muy escasa, lo cual no nos permite conocer cuál fue el papel de los peces en la subsistencia de las poblaciones cazadoras-recolectoras del pasado y cómo se conjugó el aprovechamiento de estos pequeños vertebrados en relación a los demás recursos faunísticos disponibles en cada área. El estado del conocimiento actual que surge de la investigación arqueoafunística e isotópica en una escala macroregional, señala que determinados sectores de la costa rionegrina presentan las evidencias de pesca más intensivas, frecuentes y continuas, por lo que se presenta como un área ideal para estudiar las prácticas pesqueras y sus implicaciones para los grupos humanos que usaron este amplio litoral.

3.4 Objetivos específicos e hipótesis de trabajo

El estado de conocimiento y el desarrollo de las investigaciones sintetizadas en los capítulos previos permiten abordar el estudio de la arqueología de la pesca para la costa rionegrina a partir de dos dimensiones de análisis distintas. La primera de ellas es de carácter espacial y consiste en analizar cómo la distribución diferencial de recursos (latitudinal) influyó sobre las actividades de pesca, generando variación en el tipo de recurso íctico explotado y en los beneficios que las diferentes especies de peces pudieron haber proporcionado a la subsistencia humana. Asimismo, se busca discutir en qué medida las variaciones propuestas en el uso del espacio costero (Costa Norte y Oeste) se vinculan con prácticas pesqueras disímiles en ambos tramos costeros. En este sentido nos preguntamos ¿La importancia de la pesca fue variable a lo largo de la costa rionegrina? ¿Existió variabilidad en cuanto a los taxa explotados? ¿La explotación de ciertos taxa estuvo ligada a la disponibilidad ambiental o corresponde a una estrategia selectiva? ¿Los ambientes más favorables para la pesca fueron los efectivamente utilizados? Esta dimensión de análisis es abordada a partir del estudio de los conjuntos pesqueros con una perspectiva espacial amplia, para lo cual planteo los siguientes objetivos específicos:
1. determinar la forma en que se distribuye espacialmente el registro pesquero (restos ictioarqueológicos y pesas líticas) a lo largo de toda la costa rionegrina y sus particularidades en los ambientes: más intensamente explotados (costa norte) y menos (costa oeste);
2. estudiar la composición del registro ictioarqueológico evaluando las propiedades tafonómicas de los conjuntos, en virtud de sus características particulares y de los contextos geoambientales de depósito (dunas, terrazas, depósitos coluviales, etc.);
3. establecer comparaciones con otros recursos marinos y continentales (aves y mamíferos);

La segunda dimensión plantea un análisis temporal de los conjuntos, evaluando si las prácticas de pesca variaron en función de las modificaciones en el ambiente costero y en las formas de uso de los espacios litorales por parte de los grupos humanos. Nos preguntamos: ¿Existió variabilidad temporal en las actividades de pesca desarrolladas por los cazadores-recolectores en la costa del Golfo San Matías? ¿Cómo afectaron las variaciones en la geomorfología costera a la disponibilidad de recursos icticos (en términos de diversidad y abundancia) y por lo tanto a las estrategias de pesca? ¿Existieron cambios diacrónicos en las técnicas y tecnologías de pesca? En este caso se plantean los siguientes objetivos específicos:

1. discutir la cronología y estacionalidad de las ocupaciones a fin de indagar en el uso de los recursos pesqueros en relación con su disponibilidad temporal y su presencia en los diferentes sectores costeros;
2. caracterizar las propiedades tecnológicas y morfométricas de las tecnologías pesqueras (pesas líticas) y evaluar las diferencias espaciales y temporales (en el caso que las hubiera);
3. evaluar los cambios y/o continuidades de las estrategias de pesca a lo largo de la secuencia en el marco del proceso de intensificación propuesto para el área para la parte final del Holoceno tardío.

En virtud de los objetivos específicos y los antecedentes teóricos-metodológicos, ambientales y arqueológicos desarrollados en los capítulos previos se desprenden una serie de hipótesis que guían el estudio arqueológico de la pesca en el área:

Hipótesis I

La actividad pesquera sistemática tuvo lugar en ambientes específicos dentro de la costa del GSM y se vio determinada por las características microambientales propias de cada sector (disponibilidad de recursos, sustrato, acceso a la línea de costa, bioproductividad marina y variedad de microambientes).

Si esta hipótesis se cumpliera las evidencias arqueológicas esperadas son que:

1- el registro pesquero se presente de forma heterogénea a lo largo del área de estudio, en concordancia con los ambientes más favorables;
2- los conjuntos ictioarqueológicos se encuentren constituidos por las especies disponibles localmente y no evidencien la búsqueda de unos pocos taxones preferidos,
3- ante posibles escenarios de cambios ambientales se debería observar cambios en los taxones representados.

Hipótesis II

Las actividades de pesca se habrían desarrollado a partir de estrategias diferentes en los lapsos 6000-4000 AP, 3000 AP y 2000-400 AP, en concordancia con los cambios ambientales y culturales detectados.

Respecto de esta hipótesis las expectativas arqueológicas son:

1- aparición de nuevas tecnologías pesqueras durante el tramo final del Holoceno tardío;
2- aumento de la diversidad de especies explotadas, con la inclusión de taxones subóptimos;
3- variaciones en los tamaños de las presas aprovechadas;
4- incorporación de ambientes de pesca menos óptimos;
5- evidencias de pesca no formal (es decir sin tecnologías asociadas).
Sección II
MATERIALES Y MÉTODOS

4.1 Las muestras estudiadas

Este capítulo se enfocará en caracterizar la evidencia arqueológica pesquera, vinculando el análisis de los restos ictioarqueológicos (huesos y otolitos) con la tecnología de pesca (pesas líticas). Sobre un total de 68 sondeos con restos arqueofaunísticos realizados en toda la costa del GSM, 40 presentan restos de especímenes identificados dentro de la categoría “peces”, lo que significa que el 60% de los conjuntos zooarqueológicos presentan restos ictioarqueológicos.

La muestra total analizada se compone de 15411 restos ictioarqueológicos y 150 pesas líticas. Sobre En el primer caso, 8695 restos (56,4%) fueron identificados a nivel taxonómico, lo que permitió reconocer al menos 17 taxa diferentes, mientras que 4227 (27,4%) especímenes fueron identificados únicamente a nivel anatómico. Los restantes 2489 (16,1%) restos sólo fueron identificados a nivel de Clase –Peces-. La mayor parte de la muestra (13528 restos -88%) fue recuperada en estratigrafía, procedente de 31 sondeos realizados a lo largo de la costa, mientras que 1883 restos (aprox. 12%) corresponden a recolecciones superficiales realizadas en 60 loci. Por su parte, la muestra de instrumentos líticos asociados a las pesca proviene en su totalidad de 20 loci superficiales.

Como sugiere la figura 4.1, la distribución regional de hallazgos de restos ictioarqueológicos en la costa del GSM no presenta un patrón homogéneo, más bien se observan picos de frecuencia en determinados sectores costeros.

Figura 4.1. Distribución geográfica del registro pesquero en la costa rionegrina. El tamaño de los círculos se relaciona con la densidad de hallazgos.
Teniendo en consideración la cantidad de sondeos, las recolecciones realizadas y la frecuencia de restos de peces recuperados, se destacan al menos cinco localidades arqueológicas: Bahía Creek; Bajo de la Quinta; Bahía San Antonio (que incluye Saco Viejo y San Antonio Oeste) – ubicadas en la costa norte del Golfo- y Punta Odriozola y Arroyo Verde –en la costa oeste (Figura 4.1). De hecho, del total de la muestra ictiofaunística el 96% (es decir 14812 restos) se concentra en estos cinco puntos del espacio costero.

En los siguientes capítulos (Caps. 5 a 7) se presentan los resultados alcanzados respecto del registro pesquero en las cinco localidades antes mencionadas. A continuación se presentan los métodos de análisis utilizados para estudiar las muestras.

4.2 Métodos de análisis en restos ictiofaunísticos

4.2.1 Características de las muestras arqueofaunísticas

Las muestras arqueofaunísticas analizadas son los restos ictioarqueológicos recuperados en distintas localidades de la costa rionegrina, procedentes tanto de sondeos como de recolecciones superficiales (Tabla A.1, Figura 4.2). La decisión metodológica de esta investigación fue tratar diferencialmente los restos óseos de peces (craneales y post craneales) y los otolitos que aunque también son elementos craneales poseen características propias que merecen ser destacadas y por lo tanto justifican un análisis específico.

En términos generales los restos óseos de mamíferos y aves suelen ser los más conspicuos en los depósitos arqueológicos, ofreciendo densidades variables de acuerdo a los diferentes contextos. Comparativamente los huesos de peces, además de ser mucho más pequeños, cuando son hallados suelen demandar mayores esfuerzos de recuperación y de análisis (Vale y Gargett, 2002; Nagaoka, 2005; Zohar y Belmaker, 2005). El esqueleto de los peces óseos se divide en elementos craneales y elementos post craneales (o esqueleto axial). En la mayoría de los casos los huesos del cráneo son los más diagnósticos para la determinación de especies (Wheeler y Jones, 1989; Béarez, 1998; Zangrando, 2009; Musali, 2010). Pese a esto, la determinación de especies en conjuntos ictioarqueológicos, puede ser una tarea de difícil realización sobre todo en conjuntos que son multiespecíficos (como los estudiados en este trabajo), sobre este punto se retornará más adelante.
Los otolitos, en cambio, son complejos cuerpos policristalinos, compuestos principalmente por carbonato de calcio precipitado en forma de aragonita y pequeñas cantidades de otros minerales inmersos dentro de una matriz orgánica, que se encuentran en el oído interno de los peces óseos (Carlström, 1963; Gauldie, 1993; Campana, 1999). Por su composición y morfología estos elementos son sumamente resistentes. En principio esto determinaría una mayor resistencia a los procesos de meteorización aérea que partes del esqueleto de los peces que a igual tiempo de exposición aérea se irán degradando hasta desaparecer. La forma y estructura de los otolitos son específicas para cada especie (Wheeler y Jones, 1989; Volpedo y Echeverría, 2000). Debido a estas características particulares se los ha utilizado en diversos estudios tanto para identificar especies como para conocer la estacionalidad de las ocupaciones humanas en contextos arqueológicos muy variados (Casteel, 1976; Wheeler y Jones, 1989; Van Neer et al., 2004; Sbovoda, 2013; Scartascini et al., 2013; entre otros).

4.2.2 Aspectos tafonómicos

Al igual que todos los materiales arqueofaunísticos, los restos de peces hallados en contextos arqueológicos estuvieron sometidos a diferentes procesos tafonómicos (Falabella et al., 1994; Béarez, 1998; Gifford-Gonzalez et al., 1999; Acosta et al., 2002; Zangrando 2003, 2009; Musali, 2005; entre otros). De esta forma, los elementos esqueletales de los peces se meteorizan pero, dada su particular conformación ósea, sus rasgos de meteorización difieren de los observados en los mamíferos por Behrensmeyer (1978), por tal motivo requieren un análisis particular (Gifford-Gonzalez et al., 1999). De hecho se observó que los huesos de peces son menos resistentes a la erosión mecánica que los restos de mamíferos (Wheeler y Jones, 1989). En cuanto a su presencia en el registro arqueológico existen dos aspectos fundamentales: el primero tiene que ver con la posibilidad de discernir entre procesos naturales y culturales de depositación y el segundo tiene que ver con la posibilidad de preservación de los restos icticos una vez depositados en los diversos contextos.

Respecto del primer punto muchos autores destacan que los elementos óseos pueden ingresar al sitio por la actividad de diferentes agentes tanto humanos como no humanos (Butler, 1993; Lyman, 1994; Colley, 1990; Erlandson y Moss, 2001; Zohar et al., 2001; 2008; Zangrando, 2003; 2009; Musali 2005). De hecho Butler y Schroeder (1998) observaron a partir de estudios actuales que el paso por el tracto digestivo de huesos de peces no siempre deja huellas en los especímenes consumidos. Además constataron que no es posible diferenciar las trazas digestivas entre coyotes y humanos. De esto se desprende la posibilidad de ingeso al sitio en los contenidos estomacales de animales ictiófagos (mamíferos marinos, aves y otros peces) y que difícilmente esto pueda ser detectado (ver también Nicholson, 1993a; Stewart y Gifford-Gonzalez, 1994). En estos contextos pueden resultar muy útiles los estudios de formación de los conjuntos, en donde se contemplan aspectos sedimentológicos, aspectos contextuales (como la fauna presente en el sitio, la ubicación del sitio, etc. -ver Butler y O’Connor, 2004), y las marcas o huellas presentes en los elementos esqueletales (Juan-Muns i Plans et al. 1991; Butler y Schroeder, 1998; Nagaoka, 2005; Torres 2007a). Butler 1993 observó que los depósitos culturales se estructuran a partir de variaciones en la proporción de elementos craneales vs. post craneales y una baja completitud del esqueleto, mientras que los depósitos naturales presentan proporciones similares de elementos craneales y post craneales y una alta completitud del esqueleto. Sin embargo,
Federico L. Scartascini

los criterios para diferenciar conjuntos naturales y culturales pueden ser difíciles de evaluar y en la mayoría de los casos se encuentran directamente vinculados con las características ambientales locales, por lo que resulta complicado establecer criterios generales (Tabla 4.1). El único tipo de evidencia concluyente está constituido por las huellas de corte, que sólo se observan en muy escaso número de elementos óseos, que usualmente son poco frecuentes en los conjuntos ictioarqueológicos de todo el mundo (Wheeler y Jones, 1989; Colley, 1990; Zohar et al., 2001; 2008; Nagaoka, 2005; Zangrando, 2003; Musali, 2005; Stoessel, 2012). En este sentido Willis y Boehm, 2014 observan, a partir de un registro experimental, el decrecimiento en la frecuencia de marcas de corte luego del enterramiento de los huesos, lo que tal vez pueda explicar (en parte) la escasa evidencia de este tipo de marcas en los conjuntos ictioarqueológicos.

<table>
<thead>
<tr>
<th>Criterio</th>
<th>Conjunto Natural</th>
<th>Conjunto Cultural</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diversidad Taxonómica</td>
<td>Representa la fauna disponible en el litoral o puede ser menor debido a la muerte catastrófica de una única especie</td>
<td>Puede ser mayor o menor dependiendo la estrategia y área de pesca</td>
</tr>
<tr>
<td>Frecuencia de dispersión ósea</td>
<td>Baja en zonas de rompiente (Steward, 1989, 1991) y puede ser más alta en pilotes de marea (Van Neer, 1993)</td>
<td>Alta</td>
</tr>
<tr>
<td>Distribución de tamaños calculadas a partir de elementos craneales y post craneales</td>
<td>Sin diferencias</td>
<td>Resultados diferentes dependiendo del método de procesamiento en relación con la talla</td>
</tr>
<tr>
<td>Densidad de Huesos vs. Frecuencia</td>
<td>Correlacionada</td>
<td>Sin Correlación</td>
</tr>
<tr>
<td>Presentación de los elementos esqueléticos (observados vs. esperados)</td>
<td>Esqueletos relativamente completos con huesos craneales y post craneales (observado Esperado)</td>
<td>Esqueletos incompletos (observador esperado)</td>
</tr>
<tr>
<td>Índice de Fragmentación (WMI)</td>
<td>Bajo</td>
<td>Alto en desechos</td>
</tr>
<tr>
<td>MNI vs. WMI</td>
<td>Correlación entre WMI y el MNI de diferentes huesos</td>
<td>Sin Correlación</td>
</tr>
<tr>
<td>Signos de Quemado</td>
<td>Ninguno</td>
<td>Alta densidad en desechos y baja en peces almacenados</td>
</tr>
<tr>
<td>Huellas de Corte</td>
<td>Ninguna</td>
<td>Pueden ser registradas</td>
</tr>
</tbody>
</table>

Tabla 4.1. Características de conjuntos naturales y culturales en restos de peces (Tomado de Zohar et al., 2001:1043, traducción propia).
Otra cuestión a considerar es que los restos ícticos son particularmente vulnerables a los efectos de la preservación diferencial de acuerdo a las características de los contextos. En el caso de los restos óseos de peces, los agentes y procesos que producen fracturas raras veces son de índole cultural y se relacionan más con el pisoteo o la descomposición natural de los huesos (Zangrando, 2009). Esto está relacionado con las características químicas del sustrato que las contiene, pero además con la estructura y forma de los elementos que conforman las diferentes unidades anatómicas, siendo algunas extremadamente frágiles mientras que otras son más robustas (Falabella et al., 1994; Zangrando, 2009). Un buen ejemplo de esto son las observaciones realizadas por Butler y Chatters (1994), quienes a partir del uso de rayos X determinaron que para el caso de los salmones los huesos del cráneo (a excepción del otolito) son menos densos que el esqueleto postcranial. Asimismo, la preservación diferencial de ciertas partes varía entre los distintos taxones (Nicholson, 1992; Falabella et al., 1994; Béarez, 1998; Zangrando, 2003; 2009; Musali, 2005; 2010) al igual que sucede con otros mamíferos.

Además de las cuestiones vinculadas a la densidad mineral ósea, se observó que para el caso de los restos de peces la morfología de los huesos resulta ser un factor relevante. La idea básica de esto es que cuanto mayor sea la superficie del hueso mayor será posibilidad de exposición a factores diagenéticos y a la meteorización, con lo cual la degradación del hueso será más rápida. Falabella y coautores (1994) a partir de la observación visual de cada hueso asignaron valores en una escala de 1 a 5, en donde los valores cercanos a 1 representan formas aplanaadas o laminares y aquellos cercanos a 5 corresponden a formas redondeadas.

4.2.2.a Controles tafonómicos en la costa rionegrina

Establecer parámetros para diferenciar depósitos arqueológicos de depósitos naturales es un aspecto central dentro del proyecto marco (que como ya ha sido mencionado anteriormente se desarrolla bajo una perspectiva geoarqueológica y tafonómica). En este sentido, determinar la proveniencia e historia tafonómica de los conjuntos es relevante, no sólo para los restos arqueoarqueológicos sino también para todo el conjunto arqueofaunístico, como punto de partida para realizar inferencias a partir de ello (ver Favier Dubois y Borella, 2007; Borella y Borrero, 2010; Borella y Cruz, 2012; Favier Dubois, 2013).

En primer lugar se realiza una evaluación de la geoforma donde se hallan depositados los conjuntos arqueoarqueológicos, la distancia a la costa actual, la altura sobre el nivel del mar y la matriz, entre otros (Favier Dubois y Borella, 2007:154). Específicamente para el caso de los peces, se evaluó la presentación (estratigrafía o superficie; dispersos o acumulados; articulados o desarticulados); la representación de partes y completitud (sensu Butler, 1993); la presencia o no de fauna ictíofaga; los hábitos y la ecología de las especies de peces involucradas (hábitats; gregarismo; varamientos; dieta; etc.).

En líneas generales se utilizan los procedimientos propuestos por Zohar y coautores (2001: 1004) para evaluar el origen natural o cultural de los conjuntos. Sin embargo, a diferencia de estos autores que plantean el uso del índice de Brillouin para estudiar la riqueza taxonómica, utilizamos el índice de dominancia de Simpson, ya que además de ser un índice robusto, es de fácil interpretación debido a que varía entre 0 y 1 (Magurran, 2004). Se asume que las acumulaciones naturales de peces representarían una diversidad taxonómica similar a la represen-
tación de peces costeros del área, mientras que para los conjuntos culturales la diversidad taxonómica se vería aumentada o reducida, aunque este patrón debe ser evaluado en conjunto con otras variables en cada loci.

Para evaluar la frecuencia de dispersión de huesos se calcula un promedio del número de huesos por m². Se espera que para conjuntos culturales la densidad sea mayor que para conjuntos naturales, en donde la dispersión sería más uniforme. Por supuesto, en este sentido no hay que dejar de evaluar las características geomorfológicas de los depósitos porque en ciertas condiciones algunas áreas pueden funcionar como “trampas” de huesos (ver Borella, 2003:151; Martín y Borrero, 2010: 59).

Las marcas de quemado son interpretadas como producto de la actividad humana (ver también Stewart y Gifford-Gonzalez, 1994). Aunque durante el análisis se observaron variaciones en la coloración de los huesos alterados térmicamente no se determinó el grado de combustión (e.g. quemado; carbonizado; calcinado). Consideramos que este método no es lo suficientemente confiable (ver Nicholson, 1993b) y con sólo determinar la presencia de evidencias de alteración térmica es suficiente para las discusiones desarrolladas en este trabajo. Un aspecto que debe mencionarse es la posibilidad de que los huesos adquieran coloraciones similares a las observadas por el efecto del calor, pero originadas a partir de factores diagenéticos en los sedimentos en los que se encuentran depositados (Nicholson, 1993b). Sin embargo, estas observaciones no parecen ser del todo válidas para depósitos alcalinos como los aquí analizados (ver Favier Dubois y Borella, 2007; Zanrando, 2009). Asimismo, como ya fue mencionado previamente se incluirán en la discusión final las observaciones realizadas a partir de un estudio tafonómico experimental, que se viene desarrollando desde noviembre de 2010.

Finalmente, para evaluar el grado de fragmentación ósea de los conjuntos icarioarqueológicos, se utilizaron los lineamientos propuestos por Zohar et al. (2001). Estos autores proponen que a cada hueso se le asigne un grado de representatividad empleando una escala porcentual de cinco intervalos, los cuales señalan las porciones de huesos representadas: 1. completo (91 – 100%); 2. levemente fragmentado (71 – 90%); 3. parcialmente fragmentado (51 – 70%); 4. altamente fragmentado (30 – 50%) y 5. fragmento (25 % o menor). Entonces, a partir de la ecuación Σ (Wi * Xi)/100; donde Wi es la proporción de huesos registrado para cada intervalo de fragmentación y Xi representa las cinco categorías propias para cada uno de los intervalos (en este caso: 100%; 80%; 60%; 40% y 25%), se establece el grado de fragmentación de cada hueso (WMI) y porción anatómica. Los porcentajes resultantes permiten entonces la comparación del grado de fragmentación y representación de las porciones anatómicas de una misma especie en los diferentes conjuntos.

4.2.3 Métodos de recolección de restos óseos de peces

Al igual que sucede con otros taxones, muchos de los restos de peces hallados en contextos arqueológicos son lo suficientemente visibles como para ser recolectados a mano en el momento de excavación de los conjuntos. Sin embargo, esto depende de las especies representadas, los tamaños capturados, el tipo de hueso y las características del sedimento en el que se encuentra depositado (Wheeler y Jones, 1989).
De acuerdo a lo que informa Zangrando (2003), la obtención de restos ícticos en los concheros del Canal Beagle, donde los depósitos ictioarqueológicos son sumamente numerosos, consistió en tomar una muestra de 4000 cm3 de volumen por subcapa. Este método permitió conseguir una muestra representativa al mismo tiempo que se aligeraba la carga que suponía para el personal de excavación. Sin embargo esta estrategia no resultó adecuada para la costa norte del GSM (Scartascini, 2010). No existe una metodología única y suficiente para resolver los problemas de representación y muestreo de los conjuntos ictioarqueológicos y cada investigador debe tomar decisiones en relación con sus objetivos de trabajo teniendo en consideración las peculiaridades de cada contexto. Es por este motivo que seguimos a Wheeler y Jones (1989) y Zangrando (2003, 2009), entre otros, al afirmar que la recolección directa, el cribado y la toma de muestras completas de sedimentos deben ser tareas llevadas a cabo en forma complementaria para obtener muestras representativas.

4.2.3.a Recolección de los restos óseos de peces en la costa rionegrina

En la costa del Golfo San Matías los contextos de hallazgo de los restos ictioarqueológicos son variables: desde dispersionses de materiales superficiales hasta acumulaciones de restos óseos en concheros (Favier Dubois y Borella, 2007). Los concheros se ubican en dunas y mantos eólicos de la faja costera, que se extienden sobre paleoplayas y terrazas marinas holocenas y pleistocenas ubicadas a diferentes cotas y distancias variables de la playa actual. Las acumulaciones de valvas poseen una geometría lenticular a tabular en estratigrafía que no supera los 50 cm. de espesor, pero el efecto de la erosión sobre las mismas genera montículos, más o menos alargados, de diversas dimensiones y poco espesor. Su extensión es variable (entre 1 y 10 m de largo) y por lo general se acuñan lateralmente hasta desaparecer o contactar con el extremo de otra acumulación (Favier Dubois y Borella, 2007: 154-156) (Figura 4.3).

![Figura 4.3. Esquema de evolución de una lente de valvas expuestas por deflación (Tomado de Favier Dubois y Borella 2007: 156).](image)

Para recuperar el material faunístico contenido en los concheros se realizaron sondeos de 0,5m por 0,5 m, de 1 m por 1 m o 1 m por 1,5 m –dependiendo de la extensión de la acumulación de valvas- (Figura 4.4). Se excavó por niveles artificiales de 5 cm, pasando el sedimento por zaranda de malla de 1 mm.
Finalmente se conservaron la totalidad de los fondos de zaranda para luego ser analizados en detalle en el laboratorio. Esta estrategia de muestreo permitió en el sitio Playón Cementerio la recuperación de evidencia muy pequeña y muy valiosa, como son los otolitos y las escamas de Sargo (*Diplodus argenteus*) que presentan escasas dimensiones. En este sentido, en un trabajo previo (Scartascini, 2011) presentamos el caso de un sondeo en la localidad SAO, en donde se realizó un análisis detallado de los fondos de zaranda recuperados y las implicaciones metodológicas que esta clase de evidencia tienen en la composición, frecuencia y riqueza de los conjuntos. Estas observaciones serán retomadas en la discusión final.

4.2.3.b Recolección de otolitos en la costa rionegrina

En cuanto a los otolitos, se destaca la presencia de concentraciones en superficie en determinados sectores del litoral rionegrino. Por tal motivo diseñamos una forma sistemática y que fuera representativa para poder comparar este particular registro de superficie. Se detectaron otolitos de al menos cuatro especies, aunque existe un predominio absoluto de los correspondientes a *Micropogonias furnieri* (corvina rubia). Los otolitos de corvina rubia pueden alcanzar tamaños de hasta 60 mm, con lo que son fácilmente detectados a ojo desnudo, y recogidos manualmente. Siguiendo la metodología de trabajos previos (que había resultado exitosa) (Scartascini et al., 2009; Scartascini, 2012) la recolección se realizó mediante el planteo de cuadrículas de recolección de dos metros cuadrados en los lugares que presentaban mayor densidad, mientras que se plantaron cuadrículas de mayor tamaño en sectores con menor densidad (Figura 4.5).
Esta estrategia de muestreo fue implementada para todos los materiales arqueológicos hallados en superficie (lítico y arqueofaunístico en general) en la costa del GSM (ver Borella et al., 2004). Este criterio unificado y sistemático en la recolección de materiales superficiales permitió evaluar la forma de distribución del registro arqueológico, su densidad, composición en los diferentes sectores, a partir de la comparación entre diferentes muestras recuperadas (Favier Dubois et al., 2008; Manzi et al., 2011).

4.2.4 Identificación anatómica y taxonómica

De acuerdo con Zangrando, se considera que la identificación de los restos de peces en los sitios arqueológicos depende fundamentalmente de dos factores: “la variabilidad de la muestra y la disponibilidad de una adecuada colección osteológica comparativa” (Zangrando 2003:54). Al igual que en el análisis de otros restos arqueofaunísticos en el análisis de los restos de peces pueden alcanzarse distintos niveles de identificación: orden, familia, género y especie. En algunos casos (como espinas, escamas y últimas vértebras de la porción caudal) es difícil alcanzar niveles específicos en la identificación, aunque en general representan un alto porcentaje en los conjuntos ictioarqueológicos.

Como ha sido señalado por diferentes autores (Wheeler y Jones 1989; Zangrando 2003; Musali 2005; 2010; entre otros), una de las dificultades más frecuentes a la hora de analizar los conjuntos ictioarqueológicos es la ausencia de una adecuada y completa colección de referencia osteológica. Es por este motivo que la mayoría de los ictioarqueólogos generan su propia muestra de referencia. Esto no constituye una tarea fácil ya que muchas de las especies representadas
en los sitios no son especies de interés comercial por lo que su adquisición sólo es posible si se pescan o se compran a pescadores artesanales del área de estudio. A esto hay que sumarle que una adecuada colección de referencia debe estar integrada por el mayor número posible de ejemplares de las especies presentes en el área y por individuos de distintos tamaños.

La colección de la que disponemos para el litoral del GSM fue confeccionada siguiendo los lineamientos de Wheeler y Jones (1989). Se inició durante la elaboración de la tesis de licenciatura (Scartascini 2010) y continuó completándose en la medida que pudimos ir accediendo a algunas especies. La mayoría de los ejemplares fueron obtenidos personalmente en pescaderías o durante los trabajos de campo, mientras que otros fueron facilitados por el Sr. Sergio Bogan (Fundación de Historia Natural Félix Azara). Los otolitos de las diferentes especies fueron determinados mediante el uso del “Catálogo y claves de otolitos para la identificación de peces del mar argentino” de Volпедo y Echeverría (2000). En este sentido la colección comparativa de referencia utilizada estuvo compuesta por las siguientes especies:

- Diplodus argenteus (sargo)
- Eleginops maclovinus (róbalo)
- Paralichthys sp. (lenguado)
- Odontesthes sp. (pejerrey)
- Mugil sp. (lisa)
- Umbrina canosai (pargo blanco)
- Acanthistius patachonicus (mero)
- Helicolenus lahillei (rubio)
- Trachurus lathami (jurel)
- Pseudopercis semifasciatus (salmón de mar)
- Pinguipes brasilianus (turquito)
- Pagrus pagrus (besugo)
- Porichthys porosissimus (lucerna)
- Bovichthys argentinus (torito de los canales)
- Micropoginias furnieri (corvina rubia)
- Pogonias cromis (corvina negra)
- Netuma barbus (bagre de mar)
- Percichthys trucha (perca)
- Dules auriga (cocherito)
- Namadactylus bergi (papamoscas)
- Stromateus brasiliensis (palometa moteada)
- Urophycis brasiliensis (brotola)
- Trichiurus lepturus (pez sable)
- Sebastes oculatus (cabrilla)
- Cynoscion striatus (pescadilla)
- Pomatomus saltatrix (anchoa de banco)
- Prionotus nudigula (testolin rojo)
- Pellona flavipinnis (saraca)
- Conger orbignyanus (congrio)

La identificación taxonómica y anatómica de los restos óseos de peces se llevó a cabo sobre el total de las piezas recuperadas en los conjuntos arqueológicos, únicamente a partir del método de anatomía comparada.
El esqueleto de los peces puede ser dividido en tres regiones anatómicas principales: un sector craneal, uno apendicular y otro axial (Wheeler y Jones, 1989). El sector craneal a su vez está compuesto por varios sistemas de huesos: el neurocráneo, el sistema mandibular, el arco hial y las unidades que integran el aparato opercular. Por su lado, el esqueleto apendicular está compuesto por los huesos que unen el cráneo con la columna vertebral: cleitro, posttemporal, coracoideo, radios y espinas pectorales. Finalmente el esqueleto axial está integrado por una serie de vértebras que constituyen la columna vertebral y las costillas (espinas) (Figura 4.6).

Dentro del elevado número de elementos que constituye el esqueleto de los peces existen determinados restos óseos a los que se considera diagnósticos para la identificación taxonómica. La identificación está mediada por la preservación diferencial (Falabella et al., 1994), el tamaño de la muestra (Zangrando, 2003) o debido al grado de información diagnóstica (Wheeler y Jones, 1989). Especialmente útiles son los otolitos, considerados diagnósticos para la identificación a nivel de especie, ya que su morfometría y morfología es particular en cada especie (Wheeler y Jones, 1989). Pero también los huesos que constituyen los diferentes sistemas del esqueleto craneal también son buenos indicadores para diferenciar las especies de peces presentes en el registro arqueológico (Wheeler y Jones, 1989; Zangrando, 2003; 2009). En cambio, los elementos del esqueleto axial (vértebras y espinas principalmente) suelen ser las partes menos diagnósticas de los conjuntos, pese a su alta frecuencia en los sitios y el bajo grado de fragmentación que generalmente presentan (Musali, 2005).

De acuerdo con Mengoni Goñalons (1999) y Zangrando (2009), se emplearon las siguientes categorías: *espécimen* para aludir a la unidad mínima de análisis, ya sea un fragmento óseo o un hueso entero. Del mismo modo, se utilizo el
término *elemento* cuando existe un referente anatómico conocido. Las fracciones de hueso han sido denominadas *fragmento* y en el caso de los restos óseos de peces generalmente no tiene valor diagnóstico. Consideré *identificado* a todo resto óseo que pudo ser asignado a una categoría taxonómica (menos a Clase) y anatómica. Contrariamente se consideró como *indeterminados* a todos aquellos especímenes que no pudieron ser referidos a una categoría taxonómica menor a Clase, inclusive aquellos que refieren a un elemento o región específica del esqueleto.

4.2.5 Métodos de cuantificación en conjuntos ictiofaunísticos

Los análisis cuantitativos desarrollados buscan cumplir dos objetivos principales: 1. calcular la abundancia relativa de las especies representadas en cada uno de los conjuntos y 2. establecer la variación en las partes esqueletarias representadas (Casteel y Grayson, 1977; Grayson, 1984; Lyman, 1994b; Mengoni Goñalons, 1999; entre otros). Los trabajos que debaten acerca de los métodos de cuantificación en los conjuntos ictiofaunísticos son escasos (Wheeler y Jones, 1989; Leach, 1997; Zohar et al., 2001; Zangrando, 2003, 2009; Musali 2005; Torres 2007 a y b) en comparación con la abundante bibliografía sobre los métodos de cuantificación aplicados en zooarqueología para otros vertebrados (Casteel y Grayson, 1977; Grayson, 1984; Lyman, 1994b; Mengoni Goñalons, 1999; 2006-2010; Reitz y Wing, 1999; entre muchos otros).

Para cumplir con el objetivo de caracterizar la representación relativa de cada especie y sus partes anatómicas, los zooarqueólogos generaron una serie de índices estadísticos. En este trabajo, para establecer la abundancia taxonómica y de partes esqueletarias, se utilizará el NISP -Número Mínimo de Especímenes Identificados por taxón (Payne, 1975) que puede ser entendido como la unidad mínima de observación y análisis (Lyman, 1994b). El MNI -Número Mínimo de Individuos-, permite calcular la importancia relativa de las diferentes especies que componen un conjunto (White, 1953; Megoni Goñalons, 1999; 2009). Por su parte, el MNE -Número Mínimo de Elementos- es una medida relativa de partes esqueletarias que expresa la frecuencia con la que se hayan representadas cada una de las categorías anatómicas del esqueleto (Binford, 1984). Por último, el MAU -Número Mínimo Unidades Anatómicas- (Binford, 1984) se obtiene dividiendo el MNE por cada unidad anatómica por las veces que esa parte está presente en un esqueleto completo (Mengoni Goñalons, 1999; 2006-2010).

La riqueza y diversidad de clases, son medidas dependientes del tamaño de las muestras analizadas. Muestras más grandes tenderán a mostrar mayor riqueza taxonómica que las más pequeñas en condiciones similares de integridad. Atendiendo a esto, la comparación de la diversidad taxonómica entre muestras se realiza a partir del procedimiento de rarefacción propuesto por Krebs (1999). Este análisis permite estimar la cantidad de clases o *taxa* en muestras que tienen frecuencias desiguales a partir de la generación de una curva de tamaño decreciente que representa el valor de riqueza esperado para intervalos iguales, que luego pueden ser comparados entre sí a un mismo nivel (la muestra de menor tamaño).

De tal manera, si por ejemplo la muestra más pequeña representa 50 individuos, todas las restantes muestras se comparan a ese nivel, ya que es
posible representar el valor esperado para esa frecuencia bajo condiciones aleatorias (Cardillo, 2009).

Mientras que la pendiente de la curva es indicadora del nivel de riqueza alcanzado para un conjunto, la forma es indicadora de la estructuración relativa (heterogeneidad u homogeneidad relativa) (Figura 4.7).

Figura 4.7. Curvas de rarefacción estimadas en dos muestras del mismo tamaño, pero con diferente diversidad. La curva punteada posee una mayor diversidad, mientras que la curva continua tiene una diversidad menor y una muestra más heterogénea (Tomado de Cardillo, 2009: 456).

Posteriormente se aplicará el índice de dominancia de Simpson, que presenta una gran robustez en muestras de diferente tamaño (Magurran, 2004) y permite estimar la heterogeneidad relativa de un conjunto (en qué medida se observa un desbalance en la representación de los distintos taxa). Este índice establece que los valores más cercanos a uno implican que una clase o taxa domina el conjunto, mientras que cuando los valores se acercan a cero, ninguna clase domina sobre las otras (es decir menor heterogeneidad).

Finalmente, para establecer las variaciones en la explotación de peces respecto de otros recursos se utilizaron los índices de abundancia propuestos por (Grayson, 1984 Broughton, 1994; 1997). Para ello se emplearon los resultados obtenidos por otros miembros del equipo que analizaron diferentes taxa recuperados en el registro zoorqueológico (Marani vertebrados terrestres y Borella mamíferos marinos y aves marinas). Estos índices fueron exitosamente utilizados en trabajos recientes para determinar las variaciones relativas en la explotación de peces (Zangrando, 2009; Stoessel, 2011). Básicamente implican establecer valores normalizados, entre 0 y 1 a partir de las relaciones entre NISP, por ejemplo \(\frac{\Sigma \text{NISP peces}}{\Sigma \text{NISP total}} \). Los valores cercanos a 0 implican la ausencia, mientras que los cercanos a 1, indican la predominancia total de ese taxón. Al ser un índice que se establece a partir del NISP, presenta las limitaciones propias de esta unidad analítica (Ver Mengoni Goñalons, 2006-2010, entre otros).
4.2.6 Estimación de tallas a partir de otolitos

Existen dos métodos principales para determinar la relación existente entre el tamaño de un hueso de pez y el tamaño del pez (Wheeler y Jones, 1989). El primero de ellos implica una simple comparación de los huesos de peces arqueológicos con huesos de peces de tamaño conocido (Wheeler y Jones, 1989). El otro método es el más elaborado y ajustado e implica la utilización de ecuaciones de regresión (Casteel, 1976). Para realizar esta clase de estudios lo ideal es contar con una colección de referencia por lo menos superior a un n>30 (Zangrando, 2003). Dentro de esta muestra de referencia tienen que estar representados todos los rangos de tamaño posibles.

Se estimaron las tallas de las corvinas rubias (*Micropogonias furnieri*) presentes en los loci estudiados mediante la aplicación de las ecuaciones propuestas por Volpedo (2001) (Figura 4.8). Esta investigadora generó una muestra comparativa de corvinas actuales (n=66) procedentes de Bahía San Blas (costa sur de Pcia. de Buenos Aires), en las que registró la longitud total del pez (LT) en mm. Las muestras comparativas de corvina rubia provienen de la Bahía San Blas debido a que esta es la localidad actual más próxima al Golfo San Matías donde se ha identificado la presencia del stock pesquero (Volpedo y Fernández Cirelli, 2006; Volpedo et al., 2007).

De esta forma analizamos (Scartascini et al., 2009) la morfología de los otolitos de la muestra arqueológica utilizando la terminología propuesta por Volpedo y Echeverría (1999, 2000). Registramos la longitud máxima de los otolitos (LO) en mm con un calibre digital con error menor a 0,01, y se calculó las relaciones funcionales LT vs. LO entre la longitud total de los peces y los otolitos. La aplicación de estas ecuaciones permitió generar una estimación ajustada de las tallas de los ejemplares de corvinas consumidos por los grupos humanos en el pasado.
Los resultados de estos análisis tienen implicaciones en diferentes áreas de interés arqueológico. En primera instancia pueden darnos una idea relativamente ajustada del aporte nutricional de estos recursos en la dieta de los grupos humanos que los consumieron durante el pasado. Asimismo, pueden contribuir a la discusión acerca de las técnicas de captura de los mismos, lo cual ya fue explorado en un trabajo reciente (Scartascini et al., 2009). Mientras que por otra parte pueden generar vías de análisis para la estimación de la edad de los peces capturados y así comprender mejor las características de las poblaciones de peces explotadas. Por último, todos estos datos pueden ser informativos acerca del momento del año en que se dio la captura y por lo tanto de la estacionalidad de la ocupación humana en determinado espacio costero.

4.3 Análisis de las pesas líticas

4.3.1 Características de la tecnología pesquera

Las pesas líticas son artefactos tradicionalmente relacionados con actividades de pesca y se caracterizan por presentar una formatización simple o poco estandarizada (Scartascini y Cardillo, 2009) (Figura 4.9). En líneas generales presentan una marcada homogeneidad en su forma y sección (esferoides planas), que se corresponde con la forma natural del guijarro. La modificación antrópica suele estar representada por muescas laterales, en el eje longitudinal o transversal (Torres, 2007a y b).

![Figura 4.9. Pesas líticas recuperadas en la costa del GSM (Dibujo de Marcelo Cardillo).](image-url)
Piezas similares a las registradas en la costa norte del Golfo San Matías (Scartascini, 2010) se documentaron en otros sitios de la costa patagónica (Gómez Otero et al., 1999; Gómez Otero, 2007; Massone y Torres, 2004; Torres et al., 2007) y en distintos contextos a lo largo del mundo (Owen y Merrick, 1994; Greenspan, 1998; Galili et al., 2002; Bernal Casasola, 2008). Estos autores discutieron la posibilidad de que las pesas líticas pueden ser parte de tecnologías específicas para la obtención de peces –líneas o redes de pesca–. Una tendencia general que puede ser vista en los diferentes trabajos es que parecería existir una clara correspondencia entre la presencia de restos de peces y pesas líticas en los sitios. En el caso de la costa rionegrina del Golfo San Matías estos artefactos aparecen en contextos arqueológicos superficiales, junto con partes esqueletarias de peces, otolitos y otros materiales arqueológicos como desechos de talla y en menor proporción otros restos arqueofaunísticos (Scartascini, 2010).

4.3.2 Recolección de las pesas líticas en la costa rionegrina

El contexto de hallazgo de las pesas líticas en la costa del GSM, es de carácter exclusivamente superficial, ya que hasta el momento no se han recuperado en capa. Las pesas líticas suelen encontrarse formando parte de acumulaciones superficiales a lo largo de amplios espacios muestreados (Favier Dubois et al., 2008). Es muy frecuente hallarlas dispersas, motivo por el cual se procedió a realizar recolecciones dirigidas una vez que fueron identificadas en el campo.

Siguiendo la metodología empleada en trabajos previos (Scartascini, 2010) y con el fin de obtener la mayor cantidad de datos espaciales y cronológicos posibles se relevaron durante el momento de la recolección una serie de variables, a saber:

1. localización (tomado con GPS);
2. geoforma;
3. altura sobre el nivel del mar;
4. distancia a la línea de costa actual;
5. presentación: disperso/concentrado;
6. área de dispersión;
7. elementos asociados;
8. observaciones generales.

El relevamiento de estas variables en el campo permitió tener una idea más clara de los contextos de hallazgo de los materiales y establecer tendencias de grano grueso en relación con la distribución espacial y la cronología.

4.3.3 Métodos de análisis para las pesas líticas

Para caracterizar las pesas líticas se relevaron distintas variables tecnológicas y métricas. Entre las variables tecnológicas están:

1. tipo de materia prima;
2. tipo de modificación;
3. técnica de modificación;
4. eje de modificación.

Las materias primas fueron caracterizadas a partir de la observación macroscópica, utilizando como referencia la litoteca generada por el Dr. Marcelo Cardillo.
y la Lic. Jimena Alberti. La misma se encuentra depositada en el IMHICIHU y cuenta con 15 variedades de rocas y más de 50 de cortes delgados. La caracterización macroscópica siguió los criterios generados por Alberti y Fernández (2015).

Respecto de las modificaciones se diferenciaron dos tipos principales: muescas y surcos. Por su parte, se observaron al menos tres tipos de técnicas utilizadas en la formatización de las muescas laterales o surcos (percusión; piqueteado; abradido) que no son excluyentes ya que en algunos casos las tres técnicas fueron utilizadas en un mismo artefacto. En todos los casos la observación se realizó a ojo desnudo y se utilizó la lupa binocular en los casos que resultara necesario. Finalmente el eje de modificación fue caracterizado a partir de un criterio estrictamente métrico, siendo el longitudinal el eje más largo de la pieza.

Por otra parte, las variables métricas que se contemplaron fueron:

1. largo/ancho/espesor (mm);
2. peso (g).

El largo, ancho y espesor se midieron con calibre digital (con un nivel de error menor a 0,01 mm) a partir de los ejes más largos en cada caso. Por su parte el peso se obtuvo mediante el uso de una balanza digital.

Con el fin de caracterizar la forma se utilizaron dos índices: un índice ancho/largo y un índice de robustez. El primero se obtiene al dividir el ancho de la pieza por el largo y arroja valores entre 0 y 1. Los valores más bajos, es decir los cercanos a 0 implican formas alargadas y finas mientras que los valores cercanos a 1 se relacionan a morfologías más redondeadas o cuadráticas. El uso de este tipo de índices permite captar de un modo sencillo las variaciones en la forma de la pieza en su sección frontal. Por su parte el índice de robustez se obtiene dividiendo el espesor por la sumatoria del largo y ancho -espesor/(ancho+largo)-. De igual forma que el índice anterior, arroja valores entre 0 y 1, donde los más pequeños se vinculan con piezas más delgadas, es decir menos robustas, en tanto que los valores más altos implican artefactos más densos, con morfologías tendientes a la esfericidad.
LA LOCALIDAD ARQUEOLÓGICA BAHÍA CREEK

5.1 Introducción

En este capítulo se presentan los resultados obtenidos a partir del estudio del registro pesquero recuperado en la localidad arqueológica Bahía Creek (BC). Se trata de una extensa localidad en la costa norte del Golfo San Matías, que incluye más de 10 loci arqueológicos fechados entre ca. 5000 y 1000 años AP (Favier Dubois y Borella, 2011). Buena parte del área corresponde a un gran manto de dunas depositadas sobre terrazas marinas Pleistocenas y Holocenas (Figura 5.1). La riqueza arqueológica del área había sido señalada por Bórrega (1964) e incluye abundante material lítico en superficie, numerosos concheros (con variada fauna), instrumentos óseos y malacológicos, entre otras evidencias (Favier Dubois et al., 2008).

En esta localidad se excavaron siete sondeos, en seis de los cuales se recuperaron restos ictioarqueológicos. En total la muestra estudiada asciende a 1299 especímenes, de los cuales 977 fueron identificados a nivel taxonómico y anatómico y 322 resultaron indeterminados (esta categoría incluye a los restos únicamente identificados a nivel anatómico y a los fragmentos indiferenciados). Asimismo se incluyó el material proveniente de siete muestreos superficiales que arrojaron un total de 185 otolitos y 12 pesas líticas.

Figura 5.1. Imagen de la localidad BC, sectores y loci analizados. Los puntos corresponden a sondeos mientras que los hexágonos representan las recolecciones superficiales.
La localidad presenta dos sectores de muestreo: a. sector Paleoacantilado, que dista unos 900 m de la línea de costa actual y se localiza a unos 20 metros sobre el nivel del mar actual, en donde se obtuvieron los fechados más antiguos (ca. 5000 años AP) y b. el sector Paesani que se ubica en una cota más baja y próximo a la línea de costa actual, donde se obtuvieron fechados correspondientes al Holoceno tardío final. En ambos sectores la evidencia arqueológica presenta características diferenciables, siendo destacable la escasa visibilidad de los concheros en el sector Paleoacantilado y por lo tanto la dificultad de detectar materiales estratificados allí.

5.2 El registro pesquero recuperado en sondeos

5.2.1 Aspectos contextuales y formacionales

Las muestras recuperadas en los muestreos estratigráficos de esta localidad provienen de pequeños sondeos excavados en diferentes puntos del área. En líneas generales corresponden a asomos de lentes de concheros (sensu Favier Dubois y Borella, 2007), en donde la matriz conchil preservó distintos restos faunísticos, entre ellos los ictioarqueológicos. Vinculado con la morfología y los aspectos formacionales de estos pequeños “asomos”, las excavaciones corresponden en todos los casos a sondeos de escasas dimensiones, que en ningún caso superan los 0,4 m³. La diversidad arqueofaunística de estos loci muestra una gran variedad de taxa (Marani, 2014), siendo los peces un componente destacado de los mismos, aunque en porcentajes variables (Figura 5.2 y Tabla 5.1).

Figura 5.2. NISP% de la diversidad faunística en los sondeos de PAE -no se incluye el gráfico de PALEO 1 ya que el 100% corresponde a peces. El grupo Mammalia 1 representa a las especies mayores (lobos marinos y guanacos), en tanto que el grupo Mammalia 2 se refiere a las especies menores (roedores, cánidos, aves, felinos, entre otros) (Marani, 2014).
La densidad promedio estimada para los restos ictioarqueológicos alcanza los 950 restos por m3, aunque presenta variaciones marcadas entre los distintos conjuntos, con sondeos que rondan entre los 2000 y los 800 restos por m3 y con otros que presentan valores muy por debajo de la media y que no superan los 160 restos por m3 (Tabla 5.1).

<table>
<thead>
<tr>
<th>SECTOR</th>
<th>PALEO</th>
<th>PAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locus</td>
<td>Sondeo 1</td>
<td>Sondeo 2</td>
</tr>
<tr>
<td>Volumen excav.</td>
<td>0,05 m3</td>
<td>0,05 m3</td>
</tr>
<tr>
<td>% Peces</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>NISP Peces</td>
<td>47</td>
<td>8</td>
</tr>
<tr>
<td>Densidad</td>
<td>880/m3</td>
<td>160/m3</td>
</tr>
<tr>
<td>% INDET</td>
<td>62</td>
<td>0</td>
</tr>
<tr>
<td>NISP/NISP</td>
<td>2,61</td>
<td>1</td>
</tr>
<tr>
<td>%WMI</td>
<td>80</td>
<td>88</td>
</tr>
<tr>
<td>% Alter. Térmica</td>
<td>25,53</td>
<td>12,5</td>
</tr>
<tr>
<td>% Deformación</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabla 5.1. Resumen de las variables contempladas en el análisis contextual y formacional de todos los sondeos excavados en BC.

A nivel general la muestra ictioarqueológica recuperada en los sondeos presenta un buen estado de preservación, con valores de completitud ósea promedio estimados en 80,6%. Asimismo, el porcentaje de huesos indeterminados presenta valores en torno al 28%, que comparativamente con otros conjuntos ictioarqueológicos del área y de otras partes de Patagonia, es relativamente bajo. Se destacan el Sondeo 2 y 6 del sector PAE, en donde la totalidad de la muestra ictioarqueológica recuperada fue determinada a nivel taxonómico, lo que tal vez pueda vincularse con su bajo NISP (Tabla 5.1).

Respecto de las modificaciones culturales en ningún caso se observaron huellas atribuibles a cortes, aunque si se observaron porcentajes relativamente altos (en promedio cerca del 15,2%) de restos (principalmente vértebras) con evidencias de alteración térmica. En este punto se destacan el Sondeo 1 del sector PALEO y el Sondeo 6 de PAE con porcentajes de 25,5% y 33,3% respectivamente. Finalmente las evidencias de huesos deformados sólo fueron observadas en un conjunto (PAE Sondeo 5) y en porcentajes muy bajos (0,11%).

5.2.2 Diversidad taxonómica

Como ya ha sido mencionado anteriormente, existen diferencias en la frecuencia de restos para los distintos conjuntos de la localidad. Como se observa en la Tabla 5.2, los loci más ricos (en cuanto a N taxa) son también los que presentan la mayor cantidad de restos de peces y viceversa (r=0,78 p<0,05). Por este motivo se planteó un análisis de rarefacción que permite estimar la riqueza a partir de la frecuencia del conjunto más pequeño (en este caso PAE 6 con un n=6) y de esta
manera obtener una medida menos sesgada por las diferencias en las muestras (Cardillo, 2009; ver Capítulo 4).

Las curvas de rarefacción permiten observar que PAE 4 y PAE 6 (es decir dos de las muestras más pequeñas de la localidad) son comparativamente las más ricas (Figura 5.3). La muestra de PAE 6 alcanza valores de riqueza relativamente altos (3) en frecuencias muy bajas (n=6). Por su parte, PAE 5, la muestra más grande de la localidad, y PAE 3 muestran una tendencia relativamente similar, con valores proporcionalmente altos de riqueza, aunque levemente menores a PAE 4 y 6. Distinto es el caso de PAE 2 y PALEO 1, que muestran curvas con pendientes bajas, que tienden a generar una asíntota (sobre todo el caso de PAE 2). Es decir que la curva predice que la riqueza no se verá significativamente aumentada en la medida en la que se agreguen nuevas muestras.

Figura 5.3. Curvas de rarefacción para todos los sondeos de BC y estimaciones a partir de un valor de 6 especímenes -la muestra más baja.

Enfocándonos en la estructuración de la muestra, es decir cómo se distribuyen los taxa dentro de cada conjunto, observamos que todos los loci presentan valores de dominancia relativamente altos. Esto implica que unas pocas especies dominan la muestra por sobre las demás. Tal vez el caso más visible es PALEO 1 que presenta 1 como valor de dominancia, es decir es un conjunto monoconjuntivo. Sin embargo, el resto de los conjuntos, aún con N taxa mayores muestran valores de dominancia altos, por ejemplo el caso de PAE 3, que es conjunto más rico de la localidad y arroja valores de dominancia cercanos a 0,7. El resto de los loci presentan valores en promedio cercanos a 0,5 lo que muestra conjuntos homogéneos en todos los casos (Tabla 5.2).

<table>
<thead>
<tr>
<th>Variables/Sitios</th>
<th>PALEO S. 1</th>
<th>PAE S. 2</th>
<th>PAE S.3</th>
<th>PAE S.4</th>
<th>PAE S.5</th>
<th>PAE S.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>N taxa</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>4</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>NISP</td>
<td>18</td>
<td>8</td>
<td>264</td>
<td>14</td>
<td>657</td>
<td>6</td>
</tr>
<tr>
<td>Dominancia</td>
<td>1</td>
<td>0,5</td>
<td>0,71</td>
<td>0,34</td>
<td>0,42</td>
<td>0,38</td>
</tr>
</tbody>
</table>

Tabla 5.2. Índice de diversidad de Simpson.
Tabla 5.3. Diversidad taxonómica para los sondeos excavados en BC. Número de especímenes identificados (NISP) y su valor porcentual y número mínimo de individuos (MNI) y su valor porcentual.

<table>
<thead>
<tr>
<th>Taxa</th>
<th>PAE-Sondeo 1</th>
<th>PAE-Sondeo 2</th>
<th>PAE-Sondeo 3</th>
<th>PAE-Sondeo 4</th>
<th>PAE-Sondeo 5</th>
<th>PAE-Sondeo 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NISP</td>
<td>NISP %</td>
<td>MNI</td>
<td>MNI %</td>
<td>NISP</td>
<td>NISP %</td>
</tr>
<tr>
<td>A. patachonicus</td>
<td>18</td>
<td>38 %</td>
<td>2</td>
<td>100 %</td>
<td>4</td>
<td>50 %</td>
</tr>
<tr>
<td>E. maclovinus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M. furnieri</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>50 %</td>
<td>1</td>
<td>25 %</td>
</tr>
<tr>
<td>Mylabris sp.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N. bezos</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Odontesthes sp.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Paralichthys sp.</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>25 %</td>
<td>1</td>
<td>5,3 %</td>
</tr>
<tr>
<td>P. breviceps</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P. crumen</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P. porosissimus</td>
<td>-</td>
<td>-</td>
<td>222</td>
<td>62,2 %</td>
<td>12</td>
<td>25 %</td>
</tr>
<tr>
<td>U. canaui</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>25 %</td>
<td>1</td>
<td>5,3 %</td>
</tr>
<tr>
<td>Umphnsys</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>INDET.</td>
<td>29</td>
<td>52 %</td>
<td>19</td>
<td>25 %</td>
<td>19</td>
<td>25 %</td>
</tr>
<tr>
<td>TOTALES</td>
<td>47</td>
<td>57 %</td>
<td>100</td>
<td>100 %</td>
<td>100</td>
<td>100 %</td>
</tr>
</tbody>
</table>

Figura 5.4. Variaciones porcentuales de los diferentes taxones representados en los sondeos de BC.

Al considerar estas tendencias a partir de las especies representadas observamos que ningún taxa se encuentra presente en todos los loci de la localidad. Sin embargo, las especies más comunes son: A. patachonicus y Odontesthes sp. y en menor medida E. maclovinus; M. furnieri; Paralichthys sp. y P. porosissimus (Figura 5.3). Con excepción de Odontesthes sp y M. furnieri, el resto de las especies corresponden a peces de los arrecifes costeros, es decir un tipo de ensamble de especies que aprovecha los fondos rocosos de la costa para proveerse de alimento y refugio (ver Capítulo 2). En cambio, Odontesthes sp. y M. furnieri son especies más asociadas a fondos blandos y con hábitos diferentes al resto (ver Capítulo 2). El caso de M. furnieri, presenta características peculiares ya que es una especie que en la actualidad no se encuentra disponible en el área (ver Scartascini y Volpedo, 2013).
Estas variaciones en las especies presentes dentro de los conjuntos arqueológicos de la localidad podrían vincularse con la explotación de diferentes microambientes a nivel local, aprovechando los recursos disponibles en los distintos puntos del espacio costero.

5.2.3 Representación anatómica

Como en el resto de las localidades, en este acápite se presenta la información acerca de la representación de partes de las especies más comunes, a fin de examinar las diferencias en los perfiles anatómicos entre los diferentes loci. La información correspondiente al resto de las especies puede ser consultada en los apéndices anexos.

Enfocándonos en *A. patachonicus* observamos importantes variaciones en cuanto a la representación de las partes entre los conjuntos (Figura 5.5). Sólo existe cierta homogeneidad en los patrones observados en PALEO S. 1 y PAE 5, en donde predomina los elementos correspondientes al cráneo y al segmento axial y se registra una baja representación de elementos correspondientes al esqueleto apendicular. En este sentido llama la atención lo observado en PAE 3 en donde el segmento apendicular alcanza el 50% del MNE y lo registrado en PAE 2 donde se observa una total ausencia de elementos craneales. Sin embargo estas tendencias pueden ser relativizadas si observamos la frecuencia de restos de *A. patachonicus* para estos dos loci (ver Tabla 5.3) (PAE 2= 4; PAE 3=2).

![Diagrama de MNE % A. patachonicus](image)

Figura 5.5. Porcentaje del número mínimo de elementos de *A. patachonicus* para los sondeos de BC.

La representación de partes anatómicas correspondientes a *P. porosissimus* muestra el predominio del segmento axial y porcentajes altos de elementos correspondientes al cráneo (esta sección anatómica es la predominante en PAE S3)(Figura 5.6). El esqueleto apendicular se encuentra muy escasamente representado, incluso no se detectaron elementos de esta sección en el locus PAE 4.
Capítulo 5

5.3 El registro pesquero recuperado en sondeos

5.3.1 Restos óseos y otolitos

Se realizaron siete muestreos superficiales dirigidos en distintos puntos del área (principalmente en las terrazas – Sector PALEO-), de los que se obtuvo un total de 185 otolitos. Predominan los pertenecientes a *Micropogonias furnieri* (179 especímenes, es decir el 96,7% del total). En tanto que el 3,3% (n: 6), corresponden a *Umbrina canosai*. El MNI estimado para toda la muestra asciende a 95 individuos, (*M. furnieri* = 91 y *U. canosai* = 4). La muestra total presenta una buena estado de preservación, observándose que 68 especímenes (36,7%) se encuentran completos, 96 (51,89%) levemente fragmentados (es decir posibilitaron su análisis métrico) y 21 (11,35%) se encontraron fragmentados.

La densidad media de otolitos fue estimada en 1,17 por m2, aunque se observaron variaciones entre los conjuntos con valores máximos de 5/m2 (conchero Paleo) y mínimos de 0,14/m2 (Paesani) (Tabla 5.4).

Finalmente, como se observa en las tablas de los apéndices (Tabla A.3 a Tabla A.8 en el Apéndice), el resto de las especies minoritarias presentan valores de MAU%, relativamente homogéneos a nivel anatómico, destacándose en todos los casos los elementos correspondientes al esqueleto axial. Por su parte en lo que reiere al esqueleto craneal se destacan, el complejo mandibular y opercular. Finalmente se observan porcentajes bajos de elementos correspondientes al esqueleto apendicular, siendo el posttemporal la excepción. En suma, lo observado aquí muestra variaciones relativamente uniformes entre los conjuntos, lo que en principio indicaría que las diferencias observadas en términos de representación anatómica no podrían ser explicadas en relación con factores de procesamiento y/o descarte diferencial.
Tabla 5.4. Localización, frecuencia, número mínimo de individuos y densidad/m² de los otolitos recolectados en superficie en BC.

5.3.1.a Análisis de tallas sobre otolitos

En términos generales la estimación de tallas de los otolitos de *M. furnieri* de la localidad arrojó tamaños de ejemplares congruentes con individuos juveniles grandes y adultos de la misma especie en la actualidad. La talla media para toda la localidad es de 383,3 mm con un desvío estándar de 118,68 mm.

Debido a las diferencias en la varianzas de los conjuntos se utilizó el test de Kruskal Wallis sobre las medianas para muestras no paramétricas y arrojo diferencias significativas entre los conjuntos (KW=11,19, p<0,001). La comparación entre pares se realizó a partir de la corrección de Bonferroni (es decir el procedimiento más conservador) y arrojó diferencias entre PAE y el resto de los conjuntos del área (los que no se diferenciaron entre ellos). La muestra correspondiente a PAE, además de ser menos abundante (en términos de frecuencia) muestra perfiles de tallas más seleccionados (Figura 5.7), tanto a nivel de tamaños (ejemplares muy grandes) como a nivel de la variación interna de la muestra ya que presenta los valores más bajos de desvió estándar de la localidad (Tabla 5.5).

![Tabla 5.4](image)

<table>
<thead>
<tr>
<th>Sector</th>
<th>Latitud S</th>
<th>Longitud O</th>
<th>Tamaño Muestreo</th>
<th>NISP</th>
<th>MNI</th>
<th>Dens/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terraza F. 1</td>
<td>63 57 48,2</td>
<td>100 m²</td>
<td>45</td>
<td>24</td>
<td>0,45</td>
<td></td>
</tr>
<tr>
<td>Terraza F. Paleo</td>
<td>63 57 59,0</td>
<td>50 m²</td>
<td>32</td>
<td>18</td>
<td>0,61</td>
<td></td>
</tr>
<tr>
<td>Terraza F. Paleo1</td>
<td>63 57 44,4</td>
<td>2 pers 25'</td>
<td>15</td>
<td>5</td>
<td>0,25</td>
<td></td>
</tr>
<tr>
<td>Terraza F. 2</td>
<td>63 57 47,6</td>
<td>25 m²</td>
<td>5</td>
<td>3</td>
<td>0,25</td>
<td></td>
</tr>
<tr>
<td>Pesas Paleo</td>
<td>63 58 00,4</td>
<td>100 m²</td>
<td>61</td>
<td>27</td>
<td>0,63</td>
<td></td>
</tr>
<tr>
<td>Conchero Paleo</td>
<td>63 58 03,4</td>
<td>4 m²</td>
<td>20</td>
<td>11</td>
<td>5,00</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>185</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Tabla 5.5](image)

<table>
<thead>
<tr>
<th></th>
<th>TF 1</th>
<th>PESAS PALEO</th>
<th>T. F. PALEO</th>
<th>T. F. PALEO1</th>
<th>T. F 2</th>
<th>CON. PALEO</th>
<th>PAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NISP</td>
<td>45</td>
<td>41</td>
<td>30</td>
<td>10</td>
<td>5</td>
<td>20</td>
<td>7</td>
</tr>
<tr>
<td>Mínimo</td>
<td>197,54</td>
<td>141,33</td>
<td>235,33</td>
<td>273,88</td>
<td>270,8</td>
<td>225,33</td>
<td>535,8</td>
</tr>
<tr>
<td>Máximo</td>
<td>648,8</td>
<td>589,4</td>
<td>607,2</td>
<td>521,6</td>
<td>493,4</td>
<td>638,6</td>
<td>770,2</td>
</tr>
<tr>
<td>Media</td>
<td>336,43</td>
<td>376,18</td>
<td>411,46</td>
<td>395,43</td>
<td>367,41</td>
<td>371,56</td>
<td>638,45</td>
</tr>
<tr>
<td>Varianza</td>
<td>8397,19</td>
<td>15774,71</td>
<td>10125,15</td>
<td>5819,94</td>
<td>7962,65</td>
<td>10818,52</td>
<td>7007,7</td>
</tr>
<tr>
<td>Desv. Est</td>
<td>91,63</td>
<td>125,59</td>
<td>100,62</td>
<td>76,28</td>
<td>89,23</td>
<td>104,01</td>
<td>83,71</td>
</tr>
<tr>
<td>Mediana</td>
<td>314,41</td>
<td>357</td>
<td>416,66</td>
<td>411,16</td>
<td>360,2</td>
<td>371,4</td>
<td>601,6</td>
</tr>
</tbody>
</table>

Tabla 5.5. Estadística descriptiva para la estimación de talla de los conjuntos de BC.
5.3.2 Pesas líticas

Estos artefactos fueron detectados en un único locus Pesas Paleo, con un total de 12 piezas. Se presentaron dispersas en una superficie aproximada de 100m2, aunque circunscriptas a este punto del espacio exclusivamente, vinculadas con otolitos y otras evidencias arqueológicas como desechos de talla.

<table>
<thead>
<tr>
<th>Sector</th>
<th>Muestreo</th>
<th>Latitud</th>
<th>Longitud</th>
<th>Frecuencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>PALEO</td>
<td>Pesas PALEO</td>
<td>-41.06130556</td>
<td>-63.96677778</td>
<td>12</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Tabla 5.6. Localización y frecuencia de pesas líticas en BC.

En términos generales se trata en su totalidad de guijarros de playa con escotaduras laterales confeccionadas sobre rocas locales (Cardillo y Scartascini, 2007). Se observó el predominio de materias primas locales de calidad buena a regular y disponibilidad inmediata, entre ellas predominan las volcánicas (intermedias básicas: 33,3%; ácidas: 50%), siendo las sedimentarias las que se presentan en menor porcentaje (16,6%). En todos los casos se observó una mínima formatización de estos artefactos, siendo la percusión bifacial (con cerca del 41%) la técnica de modificación predominante, seguida por la percusión unifacial y el piqueoteado bifacial, ambos con un 25% (ver Tabla A.2 en el Apéndice). Por su parte en el eje longitudinal de la pieza es donde se registró la mayoría de las modificaciones (75% de la muestra) (Tabla A.2).
5.3.2.a Análisis métrico

A partir del largo, ancho, espesor se calcularon dos índices que pudieran describir de una forma simple algunos aspectos de la forma de estos artefactos. Para estimar si las piezas presentan formas redondeadas o tabulares, se calculó el índice ancho/largo (ver Capítulo 4). Respecto de las piezas recuperadas en esta localidad se observaron valores medios en torno a 0,6 para índice ancho/largo con un agrupamiento de valores entre 0,5 y 0,75 es decir formas medias entre una redondeada y una tabular. Asimismo se observó una pequeña concentración de valores entre 0,8 y 0,85 es decir formas más redondeadas en promedio.

Para estimar la robustez de la pieza se calculó en índice de robustez (ver Capítulo 4). En este caso se observa un valor medio estimado en 0,19 y valores que no superan 0,25, es decir pesas de sección aplanada en todos los casos. Como puede observarse en la figura 5.9, la distribución es en general uniforme ya que existe una representación semejante de todos los valores de robustez a excepción de dos valores extremos. Esto podría sugerir que no existe una búsqueda dirigida a una robustez en particular y los valores no se encuentran estructurados a partir un intervalo de valores en particular.
Finalmente en lo que respecta al peso se observa una media de 151,8, con una concentración de valores entre los 100 y los 190 g (Figura 5.10). Asimismo se registraron dos pequeñas concentraciones, una de pesos bajos (en promedio 60 g) y otra de pesos altos (en promedio 230 g) (Tabla 5.7).

![Histograma de frecuencias para el peso (g) de las pesas líticas recolectadas en BC.](image)

<table>
<thead>
<tr>
<th></th>
<th>I. A/L</th>
<th>I. Robu</th>
<th>Peso (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frecuencia</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Mínimo</td>
<td>0,50</td>
<td>0,13</td>
<td>43,9</td>
</tr>
<tr>
<td>Máximo</td>
<td>0,86</td>
<td>0,25</td>
<td>261</td>
</tr>
<tr>
<td>Media</td>
<td>0,66</td>
<td>0,19</td>
<td>151,84</td>
</tr>
<tr>
<td>Varianza</td>
<td>0,009</td>
<td>0,001</td>
<td>4082,10</td>
</tr>
<tr>
<td>Desv. Est</td>
<td>0,09</td>
<td>0,04</td>
<td>63,89</td>
</tr>
<tr>
<td>Mediana</td>
<td>0,65</td>
<td>0,20</td>
<td>146,5</td>
</tr>
</tbody>
</table>

Tabla 5.7. Estadística descriptiva para las variables métricas de las pesas recolectadas en el locus Pesas Paleo.

5.4 Principales tendencias y comparaciones entre sectores

Como puede observarse en la Figura 5.1 y ya fuera mencionado anteriormente, existen variaciones contextuales y ambientales entre los dos sectores estudiados en esta localidad. Estas variaciones incluyen la distancia a la línea de costa actual, la altura sobre el nivel del mar, las geoformas asociadas y la presentación del registro arqueológico, entre otras. Consideramos que estas variaciones microambientales pueden tener implicaciones directas en la forma, estructura, diversidad y cronología del registro pequeño, por lo que a continuación se presentan las tendencias entre sectores.
5.4.1 Tendencias en el registro ictioarqueológico

Al comparar ambos sectores de esta localidad se observan diferencias significativas en varios puntos. En primera instancia se registra una marcada diferencia en la frecuencia de sondeos y recolecciones superficiales, lo que ofrece una idea aproximada de la presentación del registro pesquero en ambos sectores. En este sentido en el sector Paleoacantilado (PALEO) se observa el predominio de loci superficiales con material más o menos disperso sobre las terrazas marinas. Por su parte, en el sector Paesani (PAE) predominan geoformas de acumulación, como las dunas que contienen buena parte del registro enterrado y permitieron la excavación de pequeños sondeos donde los restos de peces fueron recuperados mayormente entre las valvas.

Enfocándonos en los conjuntos provenientes de sondeos, los análisis muestran variaciones en términos de NISP y MNI entre ambos sectores, siendo la muestra de PAE significativamente mayor a la de PALEO. Sin embargo estas diferencias no se expresan con la misma magnitud en términos de densidad de restos por m3, siendo la muestra de PAE levemente más densa que la de PALEO (Tabla 5.8). Tampoco se observan diferencias en los porcentajes promedios del índice de compleitud ósea (WMI), ya que en ambos casos son muy altos (ver tabla 5.8). No obstante, sí se registraron variaciones en la relación NSP/NISP, evidenciando un porcentaje más alto de restos indeterminados en el sector PALEO, pese a ser la muestra más pequeña.

<table>
<thead>
<tr>
<th></th>
<th>PALEO</th>
<th>PAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{loci}</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>NISP</td>
<td>47</td>
<td>1252</td>
</tr>
<tr>
<td>MNI</td>
<td>2</td>
<td>51</td>
</tr>
<tr>
<td>NISP/m3</td>
<td>880/m3</td>
<td>948,5/m3</td>
</tr>
<tr>
<td>WMI</td>
<td>80%</td>
<td>88,8%</td>
</tr>
<tr>
<td>NSP/NISP</td>
<td>2,6</td>
<td>1,29</td>
</tr>
<tr>
<td>N_{taxa}</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Dominancia</td>
<td>0,78</td>
<td>0,47</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>PALEO</th>
<th>PAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{loci}</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>NISP</td>
<td>178</td>
<td>5</td>
</tr>
<tr>
<td>MNI</td>
<td>88</td>
<td>3</td>
</tr>
<tr>
<td>NISP/m2</td>
<td>1,37/m2</td>
<td>0,14/m2</td>
</tr>
<tr>
<td>N_{taxa}</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Talla X</td>
<td>371,7</td>
<td>638,4</td>
</tr>
</tbody>
</table>

Tabla 5.8. Principales variables analizadas en la comparación del registro ictioarqueológico en ambos sectores de BC.
También se registran marcadas diferencias en la riqueza taxonómica en ambas muestras. Siendo que existe una correlación entre la frecuencia y la riqueza ($r=0,78$ $p<0,05$), la comparación entre ambas muestras puede estar sesgada a favor de la muestra más grande (sector PAE). No obstante, los análisis de rarefacción (robustos para comparaciones de muestras de distinto tamaño) permiten observar que existen diferencias marcadas en ambos sectores. De hecho, las curvas muestran que aun siendo comparadas a partir de la misma frecuencia (NISP=50 – es decir el n de la muestra más chica-) el sector Paesani es significativamente más rico que el sector Paleoacantilado. Iguales tendencias muestran los índices de diversidad, con diferencias destacables en todos los casos (ver tabla 5.8). La muestra del sector PALEO está dominada por una especie, es decir es más heterogénea, en cambio la correspondiente al sector PAE es más homogénea y las especies se distribuyen de forma más equitativa, lo que también puede observarse en la Figura 5.11.

La evidencia superficial también arroja diferencia entre ambos sectores. En el Sector PALEO se analizaron siete muestreos dirigidos, lo que contrasta con la única recolección superficial en PAE. Estas diferencias se expresan además en el desbalance del NISP y MNI entre ambos sectores y en la densidad de hallazgos por m2 (ver Tabla 5.8). La muestra de PALEO es nueve veces más densa que la de PAE. A pesar de esto, no se detectaron diferencias en el número de taxa de los loci superficiales entre los sectores, siendo en ambos igual a dos. Esta particularidad puede estar más vinculada con el contexto superficial del que las muestras provienen, en el que sólo ciertos elementos duros sobrevivieron a la meteorización aérea, que a variaciones o similitudes entre sectores respecto de la diversidad taxonómica. Por último, se observaron diferencias significativas en las tallas estimadas a partir de los otolitos entre ambos sectores. Las tallas para el sector Paleoacantilado son en promedio menores ($X=371,73$ mm) y más variables ($DE=106,2$ mm) que las observadas para el sector Paesani que presenta tallas mayores ($X=638,45$ mm) y menos dispersas ($83,72$ mm) (Figura 5.12). El test de la t arroja diferencias significativas para ambas muestras ($p<0,01$). Esto implica variaciones en los perfiles de las presas en ambos sectores, lo que tal vez podría vincularse con variaciones en las artes de pesca o en los ambientes explotados.
5.4.2 Tendencias en las pesas líticas

Como ya se observó en el punto 3.2 de este capítulo pese a los esfuerzos de muestreo en el sector PAE no se detectaron aún pesas líticas. En este sentido la muestra de estos artefactos para la localidad provienen sólo del sector PALEO y sus principales tendencias ya han sido desarrolladas anteriormente.

5.5 Breve síntesis

Del conjunto de datos presentados y discutidos en este capítulo surgen algunas pautas generales acerca de la explotación de peces en la localidad.

En primer lugar, se observó la variación en la procedencia de las muestras. La magnitud del registro pesquero recolectado en superficie se iguala en muchos casos al recuperado en sondeos, por este motivo ambos son incluidos dentro del análisis.

La diversidad de especies ícticas explotadas en toda la localidad alcanza los 12 taxa (Figura 5.3), siendo las especies más abundantes *A. patachonicus*, *Odontesthes* sp. y *P. porosissimus*. En líneas generales todas corresponden al ensamble de “peces de los arrecifes patagónicos”, es decir un grupo de especies vinculadas a zonas litorales de fondos rocosos (Irigoyen y Galván, 2010). Esto podría implicar que la explotación de peces en el área estuvo vinculada a esta clase de ambientes en particular, aprovechando la diversidad ictiofaunística allí desarrollada. Sin embargo, la diversidad de especies explotadas incluye unos pocos taxa que corresponden a peces nadadores y habitantes de fondos blandos, por ejemplo *M. furnieri*, *U. canosai* y *Odontesthes* sp. (ver Capítulo 9 para las implicaciones en las actividades pesqueras).

Como se observa en el análisis entre sectores parecería existir variaciones en la diversidad de especies explotadas en ambos casos. Sin embargo el registro superficial (predominante en PALEO) puede estar afectado por la preservación diferencial a favor de los otolitos de corvina rubia, dado que son elementos más resistentes a la meteorización aérea y más visibles al momento de la recolección. De
hecho, la diversidad anatómica señala claras diferencias entre los conjuntos superficiales y los sondeos. Los loci superficiales presentan un abrumador predominio de elementos craneales (otolitos) y en ocasiones unas pocas vértebras muy meteorizadas. Por su parte los sondeos representan todas las categorías anatómicas aunque en proporciones variables. Dentro de este contexto sería esperable una muy baja riqueza taxonómica para los loci superficiales y en consecuencia para todo el sector PALEO. Aun así, el único sondeo realizado en este sector muestra tendencias similares al registro superficial con valores de dominancia muy elevados (D=0,78) es decir total dominio de un taxa. En definitiva, entonces las comparaciones en torno a la diversidad en ambos sectores no pueden ser tan fiables debido a los aspectos formacionales y tafonómicos involucrados y/o a las diferencias entre muestras. Sin embargo a partir del MNI podemos obtener una imagen aunque sea sesgada acerca de la intensidad en el consumo de peces en ambos sectores, siendo el registro de S. PALEO el más significativo en este punto.

Estas diferencias se expresan también en relación con las tallas estimadas a partir de los otolitos recuperados en superficie en ambos sectores. En este sentido la muestra del sector PALEO además de ser notoriamente más numerosa presenta un gran distribución de tamaños y tallas en promedio menores al sector PAE en donde la media es mayor y la dispersión es significativamente más acotada. Esta tendencia, sumada al hecho que sólo en el sector PALEO se registraron pesas líticas, puede implicar variaciones espaciales (y posiblemente cronológicas –ver Capítulos 9 y 10) en las estrategias y técnicas de pesca en ambos sectores.
LA LOCALIDAD ARQUEOLÓGICA BAJO DE LA QUINTA

6.1 Introducción

Se trata de una localidad de aproximadamente nueve hectáreas de extensión, donde se detectaron múltiples concheros emplazados entre las dunas deflacionadas localizadas sobre una terraza alta, en los dominios de la Estancia “La Madreselva” (Borella et al., 2006) (Figura 6.1). Los concheros están constituidos principalmente por mejillones, cholgas y en menor medida mejillines. La evidencia arqueológica es bien variada e incluye abundante material lítico (tallado y pulido), así como tiestos cerámicos (Borges Vaz, 2013) hallados junto a círculos de guijarros termaalterados, valvas modificadas, restos faunísticos y restos óseos humanos (Borella et al., 2006). Para un mejor estudio espacial de los materiales hallados en esta extensa localidad se diferenciaron seis sectores de muestreo (Favier Dubois et al., 2008). Es la localidad arqueológica en la que se ha recuperado la mayor cantidad y diversidad de instrumentos líticos de la costa rionegrina (Cardillo, 2009). Las diferentes dataciones muestran ocupaciones humanas entre 6000 y 450 años antes del presente, con un hiato entre los 3000 y 4000 años AP en el que hasta el momento no se ha registrado evidencia (Favier Dubois y Scartascini, 2012; Favier Dubois, 2013). Aquí se realizó la excavación de un total de 13 sondeos, en cinco de los cuales se recuperaron básicamente restos de peces, y 20 muestreos de superficie.

Figura 6.1. Localidad Arqueológica Bajo de la Quinta con el emplazamiento de los loci mencionados (puntos: sondeos, hexágonos: muestreos superficiales).
Se presentan los loci de cuatro sectores de muestreo dentro de esta extensa localidad. Si bien los datos correspondientes a los sondeos: conchero 80, LNE 125, 126 y LNO 146 fueron presentados y discutidos en un trabajo previo (Scartascini, 2012), aquí son reevaluados e integrados en el marco de la nueva evidencia superficial y estratigráfica.

6.2 El registro pesquero recuperado en sondeos

6.2.1 Aspectos contextuales y formacionales

Como se puede observar en la Tabla 6.1 (ver abajo), todos los muestreos estratigráficos realizados en esta localidad corresponden a pequeños sondeos que en ningún caso superan los 0,2m³. Esta particularidad implica que los concheros, principales unidades portadoras del registro arqueofaunístico en la región (Favier Dubois y Borella, 2007; ver Capítulos 2 y 4), presentan una alta densidad de restos ictiofaunísticos -estimada para todos los loci de la localidad-, y además una alta diversidad taxonómica (Figura 6.2). En promedio los valores se ubican en torno a los 5400 restos por m³, siendo una excepción el locus GPS 142 con 1090 restos por m³ (Tabla 6.1). Lo que se adecua a lo observado por Zohar et al., 2001 para conjuntos de origen cultural.

Figura 6.2. NISP% de la diversidad faunística en los sondeos de BQ. El grupo Mammalia 1 representa a las especies mayores (lobos marinos y guanacos), en tanto que el grupo Mammalia 2 se refiere a las especies menores (roedores, cánidos, felinos, entre otros).
A nivel general la muestra ictioarqueológica recuperada en los sondeos presenta un buen estado de preservación, con una media de completitud ósea estimada en 76,8%. El gran porcentaje de restos indeterminados observado en los distintos conjuntos (en promedio 61%) y los valores altos en la relación NSP/NISP (en promedio 2,88) son frecuentes en los conjuntos ictiofaunísticos, en donde una buena parte de los huesos presenta bajos o nulos niveles de identificación taxonómica (p.e. espinas y radios). Respecto de las modificaciones culturales, en ningún caso se observaron huellas atribuibles a cortes, aunque si se observaron porcentajes bajos (en promedio cerca del 1,5%) de restos (principalmente vértebras) con evidencias de alteración térmica. Tendencias similares, aunque en un porcentaje promedio aún menor (0,8), se observaron respecto de las evidencias de deformación.

<table>
<thead>
<tr>
<th>SECTOR</th>
<th>SEC 3</th>
<th>LNE</th>
<th>LNO</th>
<th>SEC 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locus</td>
<td>GPS 80</td>
<td>GPS 126</td>
<td>GPS 125</td>
<td>GPS 142</td>
</tr>
<tr>
<td>Volúmen excav.</td>
<td>0,1m³</td>
<td>0,1m³</td>
<td>0,032 m³</td>
<td>0,20m³</td>
</tr>
<tr>
<td>% Peces</td>
<td>97,7</td>
<td>70</td>
<td>58,3</td>
<td>52,7</td>
</tr>
<tr>
<td>NISP Peces</td>
<td>848</td>
<td>493</td>
<td>231</td>
<td>218</td>
</tr>
<tr>
<td>Densidad</td>
<td>8480/m³</td>
<td>4930/m³</td>
<td>6243/m³</td>
<td>1090/m³</td>
</tr>
<tr>
<td>% INDET</td>
<td>52</td>
<td>69,4</td>
<td>62,8</td>
<td>68,9</td>
</tr>
<tr>
<td>NSP/NISP</td>
<td>2,08</td>
<td>3,2</td>
<td>2,6</td>
<td>3,6</td>
</tr>
<tr>
<td>%WMI</td>
<td>77,64</td>
<td>79,01</td>
<td>80,59</td>
<td>70,24</td>
</tr>
<tr>
<td>% Alt. Térmica</td>
<td>0,47</td>
<td>1,41</td>
<td>0</td>
<td>2,75</td>
</tr>
<tr>
<td>% Deformación</td>
<td>2</td>
<td>0</td>
<td>2,16</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabla 6.1. Tabla resumen de las variables contempladas en el análisis contextual y formacional de todos los sondeos excavados en BQ.

6.2.2 Diversidad taxonómica

Si comparamos la riqueza taxonómica entre los loci, observamos que la mayoría de los conjuntos presentan entre cinco y ocho taxa, con la excepción del sondeo GPS 126 que presenta 11. Esta diferencia no es menor, sobre todo si tenemos en cuenta que este sondeo no es el más abundante en términos de frecuencia. Como es esperable, el tamaño de la muestra puede influir en la cantidad de clases representadas. Por este motivo se realizó el análisis de rarefacción que establece comparaciones a un mismo n muestral. En este sentido efectivamente las curvas de rarefacción muestran que el sondeo GPS 126 es el más rico de la localidad, pese a que no presenta la frecuencia más alta. Lo mismo sucede con el sondeo GPS 142 que pese a su NISP bajo, es comparativamente más rico que el sondeo 2 y el sondeo GPS 80 (las muestras más grandes de la localidad). Finalmente, el sondeo GPS 125 es el menos rico del área, con cinco taxa representados.
Asimismo como se observa en la tabla 6.2, se registraron variaciones marcadas en cuanto a la representación de los taxa en cada uno de los sondeos. En este sentido, el índice de dominancia muestra que el sondeo GPS 80, el Sondeo 2 y en menor medida el sondeo GPS 125 presentan valores de dominancia relativamente altos (en torno a 0,4), es decir que uno o unos pocos taxa dominan sobre el resto. Por otra parte, los sondeos GPS 126 y GPS 142 tienen una distribución más homogénea, en el que los distintos taxa se encuentran representados de forma relativamente equitativa.

Al considerar estas tendencias a partir de las especies representadas en cada conjunto observamos que pese a que varían en su representación porcentual existen tres taxa comunes a todos los sondeos de la localidad: A. patachonicus, E. maclovinus y Odontesthes sp., aunque también se encuentran bien representados B. argentinus, Paralichthys sp. y P. porosissimus. Con excepción de Odontesthes sp., todas las especies corresponden al ensamble de peces de los arrecifes patagónicos y pueden ser localizadas en la actualidad en la plataforma litoral frente a la localidad.
Figura 6.4. Representaciones porcentuales de las diferentes especies recuperadas en los sondeos de BQ.

<table>
<thead>
<tr>
<th>Taxa</th>
<th>SEC 3 GPS 80</th>
<th>LNE GPS 126</th>
<th>LNE GPS 125</th>
<th>ILO GPS 142</th>
<th>SEC 3 SONDEO 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NISP</td>
<td>%</td>
<td>MNI</td>
<td>%</td>
<td>NISP</td>
</tr>
<tr>
<td>A. potarchonius</td>
<td>37</td>
<td>4,4</td>
<td>2</td>
<td>9,1</td>
<td>27</td>
</tr>
<tr>
<td>B. argentinus</td>
<td>22</td>
<td>2,6</td>
<td>2</td>
<td>9,1</td>
<td>5</td>
</tr>
<tr>
<td>C. peruvianus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>31</td>
</tr>
<tr>
<td>D. argenteus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>E. maclovius</td>
<td>46</td>
<td>5,4</td>
<td>1</td>
<td>4,55</td>
<td>37</td>
</tr>
<tr>
<td>M. furnieri</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>17</td>
</tr>
<tr>
<td>N. bergii</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Odontesthes sp.</td>
<td>7</td>
<td>0,8</td>
<td>1</td>
<td>4,55</td>
<td>19</td>
</tr>
<tr>
<td>Paralichthys sp.</td>
<td>32</td>
<td>3,8</td>
<td>2</td>
<td>9,1</td>
<td>4</td>
</tr>
<tr>
<td>Patagonotaeniophin sp.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P. brasiliensis</td>
<td>1</td>
<td>0,1</td>
<td>1</td>
<td>4,55</td>
<td>1</td>
</tr>
<tr>
<td>P. cromis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>P. parasissimus</td>
<td>262</td>
<td>32</td>
<td>13</td>
<td>59,1</td>
<td>2</td>
</tr>
<tr>
<td>Siliuriforme</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>INDET.</td>
<td>441</td>
<td>52</td>
<td>-</td>
<td>342</td>
<td>69,4</td>
</tr>
<tr>
<td>TOTALES</td>
<td>848</td>
<td>100</td>
<td>22</td>
<td>100</td>
<td>493</td>
</tr>
</tbody>
</table>

Tabla 6.3. Diversidad taxonómica para los sondeos excavados en BQ. Número de especímenes identificados (NISP) y su valor porcentual y número mínimo de individuos (MNI) y su valor porcentual.
6.2.3 Representación anatómica

Siendo que las especies más frecuentes para la localidad son *A. patachonicus*, *E. maclovinus* y *P. porosissimus* la evaluación en torno a los perfiles anatómicos se centrará en ellas. Sin embargo, los datos correspondientes a las demás especies pueden ser consultados en el apéndice (Tablas A.9 a A.13).

Para el caso *A. patachonicus*, los perfiles anatómicos muestran tendencias similares en todos los loci de la localidad. A nivel general se observan porcentajes elevados de elementos correspondientes al esqueleto axial (principalmente vértebras) y al esqueleto craneal. Estas dos categorías se presentan en valores relativamente uniformes en todos los loci del área. En el único locus en el que estos valores se encuentran desbalanceados es en GPS 80, en donde el esqueleto axial predomina ampliamente sobre el craneal. Las tendencias respecto del esqueleto apendicular son también muy uniformes en todos los conjuntos de la localidad, con excepción del Sondeo 2, donde no se registraron elementos de esta porción (Figura 6.5).

![Gráfico](image)

Figura 6.5. Porcentaje del número mínimo de elementos de *A. patachonicus* para los sondeos de BQ.

Respecto de *E. maclovinus*, se observa el predominio casi absoluto de elementos correspondientes al esqueleto axial y esta tendencia es uniforme en todos los loci de la localidad. Sólo en tres conjuntos se identificaron elementos correspondientes al esqueleto craneal, aunque en ningún caso superan el 5%. Finalmente, no se detectaron en ningún caso partes correspondientes al esqueleto apendicular. Esta tendencia se mantiene en casi todos los conjuntos del área, en donde *E. maclovinus* se encuentra casi únicamente representado a partir de elementos del esqueleto axial. Surgen tres hipótesis posibles en este sentido, 1. factores de preservación diferencial, 2. Descarte diferencial de partes y/o 3. problemas de identificación (Ver Capítulo 9).
Solo dos loci presentan evidencias de *P. porosissimus* y muestran tendencias similares. En ambos se observan porcentajes altos (aunque en proporciones diferentes) de elementos correspondientes al esqueleto axial y craneal y baja o nula representación del esqueleto apendicular. Estas tendencias se corresponden además con lo documentado respecto de otras especies, en donde se observan representaciones en proporciones variables de elementos principalmente correspondientes al cráneo y la parte axial del esqueleto, siendo la presencia de partes del esqueleto apendicular nula o muy baja en los diferentes loci.

En síntesis entonces, las tendencias en la representación relativa de partes por especies no presentan variaciones de importancia. Las partes anatómicas presentan diferencias relativas en su representación, pero varían de forma uniforme entre los distintos loci. Estas tendencias también son observadas en las especies minoritarias a partir del MAU% (ver Tablas A.9 a A.13 del apéndice). En este sentido, consideramos que, en principio, factores como el descarte y el procesamiento diferencial no serían procesos disturbadores significativos en estos conjuntos.
6.3 El registro pesquero recuperado en superficie

6.3.1 Restos óseos y otolitos

En esta localidad se realizaron más de 20 muestreos superficiales en los que se recolectaron entre otras evidencias arqueológicas – desechos de talla lítica, pesas líticas y evidencia arqueofaunística (ver Favier Dubois y Scartascini, 2012; Borella y L’ Heureux, 2014; Marani, 2014). La muestra de otolitos recuperada asciende a 441 especímenes y proviene de dos sectores de la localidad (Sector La Noria y Sector Terrazas). La densidad promedio para todos los loci asciende a 1,23 otolitos/m², aunque existen algunos loci que se destacan por su alta densidad (e.g. Sec. Otolitos -17,7/m²- y Terraza Holocena -21,7/m²-, ambos del Sector Terrazas).

En términos generales predominan ampliamente los pertenecientes a *M. furnieri*, con una frecuencia de 438 otolitos (es decir 99,3%) y un MNI estimado en 220 ejemplares. La muestra restante es decir 3 otolitos (MNI=2), corresponde a *U. canosai*, otra especie de esciénido de aspecto muy similar a *M. furnieri*. A nivel general la muestra se encuentra en buen estado de preservación, con 367 (83,27%) ejemplares enteros, 63 (14,3%) levemente fragmentados por lo que posibilitaron su análisis métrico y 11 (2,5%) fragmentados.

<table>
<thead>
<tr>
<th>Sector</th>
<th>Locus</th>
<th>Latitud S</th>
<th>Longitud O</th>
<th>Tamaño</th>
<th>N</th>
<th>MNI</th>
<th>Dens./m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>La Noria</td>
<td>LNE</td>
<td>40 9398</td>
<td>64.3366433</td>
<td>30m²</td>
<td>11</td>
<td>7</td>
<td>0,55</td>
</tr>
<tr>
<td></td>
<td>LNO</td>
<td>40 9398</td>
<td>64.3366333</td>
<td>50m²</td>
<td>23</td>
<td>12</td>
<td>0,46</td>
</tr>
<tr>
<td>Sec. Otolitos</td>
<td>40 9468333</td>
<td>64.3298666</td>
<td>4m²</td>
<td>71</td>
<td>36</td>
<td>0,17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T F (bolsa 1)</td>
<td>40 9380166</td>
<td>64.3298333</td>
<td>100m²</td>
<td>14</td>
<td>9</td>
<td>0,13</td>
</tr>
<tr>
<td></td>
<td>T F (bolsa 2)</td>
<td>40 9376</td>
<td>64.3349833</td>
<td>50m²</td>
<td>12</td>
<td>7</td>
<td>0,22</td>
</tr>
<tr>
<td></td>
<td>T F (bolsa 3)</td>
<td>40 9381333</td>
<td>64.3299186</td>
<td>25m²</td>
<td>6</td>
<td>4</td>
<td>0,16</td>
</tr>
<tr>
<td></td>
<td>T F (bolsa 4)</td>
<td>40 9462222</td>
<td>64.3188666</td>
<td>100m²</td>
<td>37</td>
<td>10</td>
<td>0,37</td>
</tr>
<tr>
<td></td>
<td>T F (bolsa 5)</td>
<td>40 9485277</td>
<td>64.3198888</td>
<td>100m²</td>
<td>6</td>
<td>3</td>
<td>0,06</td>
</tr>
<tr>
<td></td>
<td>T F3</td>
<td>40 9471333</td>
<td>64.3159277</td>
<td>100m²</td>
<td>7</td>
<td>4</td>
<td>0,07</td>
</tr>
<tr>
<td></td>
<td>T F Fondo</td>
<td>40 9460277</td>
<td>64.3173138</td>
<td>100m²</td>
<td>8</td>
<td>5</td>
<td>0,08</td>
</tr>
<tr>
<td></td>
<td>T Holocena</td>
<td>40 9418511</td>
<td>64.3386916</td>
<td>4m²</td>
<td>87</td>
<td>48</td>
<td>21,7</td>
</tr>
<tr>
<td></td>
<td>T T (bolsa 1)</td>
<td>40 9430833</td>
<td>64.3333611</td>
<td>25m²</td>
<td>21</td>
<td>15</td>
<td>0,84</td>
</tr>
<tr>
<td></td>
<td>T T (bolsa 2)</td>
<td>40 94375</td>
<td>64.3319444</td>
<td>50m²</td>
<td>5</td>
<td>3</td>
<td>0,1</td>
</tr>
<tr>
<td></td>
<td>RQ TF MUT</td>
<td>40 9413611</td>
<td>64.3259166</td>
<td>100m²</td>
<td>38</td>
<td>19</td>
<td>0,38</td>
</tr>
<tr>
<td></td>
<td>T del Conchero</td>
<td>40 9362</td>
<td>64.3331356</td>
<td>50m²</td>
<td>18</td>
<td>10</td>
<td>0,34</td>
</tr>
<tr>
<td></td>
<td>T alta</td>
<td>40 9436</td>
<td>64.32666</td>
<td>9m²</td>
<td>31</td>
<td>18</td>
<td>3,4</td>
</tr>
<tr>
<td>Terrazas</td>
<td>T 1RQ1</td>
<td>40 9462222</td>
<td>64.3251566</td>
<td>50m²</td>
<td>7</td>
<td>4</td>
<td>0,12</td>
</tr>
<tr>
<td></td>
<td>1Rentrante E</td>
<td>40 9458333</td>
<td>64.3274666</td>
<td>4m²</td>
<td>16</td>
<td>11</td>
<td>3,75</td>
</tr>
<tr>
<td></td>
<td>1Rentrante O</td>
<td>40 9435333</td>
<td>64.3268666</td>
<td>4m²</td>
<td>9</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>TC Norte</td>
<td>40 9501667</td>
<td>64.3267333</td>
<td>25m²</td>
<td>12</td>
<td>6</td>
<td>0,44</td>
</tr>
</tbody>
</table>

Tabla 6.4. Localización, frecuencia, número mínimo de individuos y densidad/m² de los otolitos recolectados en superficie en BQ.
6.3.1.a Análisis de tallas sobre otolitos

A nivel general para todos los otolitos de *M. furnieri* de la localidad la estimación de tallas arrojó tamaños congruentes con individuos adultos de la especie en la actualidad, es decir mayores a 360 mm. El promedio de tallas para BQ es de $X=434,0$ mm de longitud total, con un desvío estándar (D.E.)=124,4 mm.

Como la muestra no cumple los criterios para un análisis paramétrico se utilizó el test de Kruscal Wallis sobre las medianas que señala diferencias significativas ($KW=153,1$, $p<0,001$). Para comparar entre pares se aplicó la corrección de Bonferroni que es la más conservadora y se detectaron cinco conjuntos que se diferencian estadísticamente del resto de la muestra (TT 1, TT2, TF Mlit, T. Holocena y LNE).

![Box plot de las tallas estimadas (mm) de *M. furnieri* en BQ.](image)

6.3.2 Pesas líticas

En nueve muestreos realizados en los cuatro sectores de la localidad se recuperaron 36 pesas líticas. Llamativamente, los dos sectores donde se recolectaron otolitos (Terrazas y La Noria) presentan también la mayor frecuencia de pesas (en conjunto representan cerca del 78% del total de la muestra).
Tabla 6.5. Localización y frecuencias de las pesas líticas recolectadas en BQ.

En líneas generales se trata en todos los casos de guijarros de playa apenas modificados a partir de pequeñas escotaduras laterales o en menor medida con surcos o surcos insinuados. La técnica de modificación predominante es la percusión unifacial y el piqueteado (en ambos casos representando el 28% -n=10-). Le siguen la percusión bifacial (14%, n=5) y la percusión y piqueteado (12%, n=4), mientras que el resto de las categorías se encuentran por debajo del 10%. Sobre el eje transversal de la pieza es donde se registró la mayoría de modificaciones (53%, n=19), el 44% (n=16) sobre el eje longitudinal de la pieza y un caso (3%) presentó modificaciones en ambos ejes de la pieza.

Finalmente, las materias primas representadas corresponden a rocas locales de disponibilidad inmediata (principalmente correspondientes al manto tehuelche –ver Alberti, 2010). Predominan las volcanitas 86% (n=31) (Ácidas= 50%, Intermedias Básicas=36%); lo siguen las sedimentarias 11,1% (n=4), el resto de las categorías se encuentran en porcentajes bajos dentro de la categorías otras: 2,7% (n=1).

6.3.2.a Análisis métrico

A partir del largo, ancho y espesor se calcularon dos índices que pudieran describir de una forma simple algunos aspectos de la forma de estos artefactos. Para estimar si las piezas presentan formas redondeadas o tabulares, se calculó el índice ancho/largo (ver Capítulo 4). En este sentido, se observa que gran parte de las pesas recuperadas en BQ presentan formas tendientes a la circularidad (es decir valores cercanos a 1), mientras que un pequeño grupo de piezas presentan formas más alargadas, más cercanas al tipo tabular (Figura 6.9). A pesar de que no llega a ser una distribución binomial, si se observan dos concentraciones de valores (Figura 6.9), lo que puede implicar dos grupos de formas diferenciables. El grupo mayoritario, se concentra en torno al índice 0,80 y corresponde a una morfología redondeada. Por otra parte, el segundo conjunto de valores se agrupa entre 0,48 y 0,62 y corresponde a morfologías más rectangulares o tabulares.

Figura 6.9. Histograma de frecuencias para el índice ancho/largo (0-1) de las pesas líticas recolectadas en BQ.
Para estimar si la pieza presenta una sección plana o más bien esférica se calculó el índice de robustez (ver Capítulo 4). Como muestra la Figura 6.10, la mayor parte de las pesas líticas recuperadas en BQ, se concentran en los valores cercanos a 0, es decir presentan una sección más bien chata o aplanada. Como sugiere la forma de la curva, es decir una curva normal con una asimetría positiva, la distribución de valores se da entre 0,10 y 0,25 con unos pocos casos extremos entre 0,30 y 0,45. Estos últimos implican formas relativamente más espesas aunque de sección más bien plana.

Figura 6.10. Histograma de frecuencias para el índice de robustez (0-1) de las pesas líticas recolectadas en BQ.

Finalmente en lo que se refiere al peso, los análisis sugieren una distribución más o menos homogénea, con una media de 138 g y una concentración de valores entre los 80 y 180 g. De igual forma que el índice de robustez, la distribución presenta una curva normal con asimetría positiva, lo que implica la presencia de un conjunto de piezas con valores altos aunque en baja frecuencia. Como se observa en la Figura 6.11, llama la atención un pequeño grupo de artefactos (n=2) con pesos comparativamente bajos respecto del resto de la muestra. Estas dos piezas presentan en promedio pesos cercanos a los 40 g. Es decir tres veces menores a la media del conjunto.

Figura 6.11. Histograma de frecuencias para el peso (g) de las pesas líticas recolectadas en BQ.
6.4 Principales tendencias y comparaciones entre sectores

Atendiendo a uno de los objetivos de este trabajo, se plantea en este apartado una comparación entre los cuatro sectores de muestreo dentro de esta enorme localidad arqueológica. Estos distintos sectores se encuentran en micro ambientes variables (distancias a la costa actual, alturas y geoformas, entre otros), lo que puedo haber influido en los escenarios de pesca antigua tanto en la escala espacial como en la temporal (ver Capítulos 9 y 10). A continuación se plantean las tendencias principales acerca de la presentación, distribución, riqueza y estructura del registro pesquero en cada sector y se los compara para lograr un acercamiento en distintas escalas al registro pesquero de la localidad.

6.4.1 Tendencias en el registro ictioarqueológico

Al establecer comparaciones entre los distintos sectores dentro de la localidad, observamos algunos patrones que nos permitirán evaluar las principales tendencias y realizar una breve síntesis del registro pesquero en BQ. En primer punto se observan variaciones en cuanto a proveniencia de las muestras. Sólo el sector LN presenta muestras tanto de sondeos como de superficie mientras que SEC 1 y 3 únicamente corresponden a sondeos y Terrazas sólo a loci superficiales. Estas diferencias, son indicativas de la variedad de situaciones en las que se localiza el registro ictioarqueológico en la localidad.

Respecto de la evidencia recuperada en sondeos, que se restringe únicamente a tres sectores (Sec. 1, 2 y LN), se observa muestras relativamente homogéneas respecto de NISP, aunque el sector LN corresponde a tres loci mientras que en el SEC 1 y 2 sólo se realizó un sondeo. Esta diferencia queda expresada si comparamos las muestras a nivel de MNI en donde LN duplica los valores observados en SEC 1 y 2. En lo que refiere a la densidad de restos por m3 el SEC 3 es el que presenta los valores más altos, con 8480 restos/m3, es decir el doble de la densidad media observada para los distintos sondeos de LNE.

<table>
<thead>
<tr>
<th>Variables</th>
<th>SEC 1</th>
<th>SEC 2</th>
<th>LN</th>
<th>TERRAZAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>N loci</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>NISP</td>
<td>923</td>
<td>848</td>
<td>942</td>
<td>0</td>
</tr>
<tr>
<td>MNI</td>
<td>20</td>
<td>22</td>
<td>42</td>
<td>0</td>
</tr>
<tr>
<td>NISP/m3</td>
<td>6153</td>
<td>8480</td>
<td>4067</td>
<td>0</td>
</tr>
<tr>
<td>WMI</td>
<td>76,87%</td>
<td>77,64%</td>
<td>76,58%</td>
<td>0</td>
</tr>
<tr>
<td>NSP/NISP</td>
<td>2,20</td>
<td>2,08</td>
<td>3,13</td>
<td>0</td>
</tr>
<tr>
<td>N toxo</td>
<td>8</td>
<td>7</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Dominancia</td>
<td>0,40</td>
<td>0,44</td>
<td>0,22</td>
<td>0</td>
</tr>
<tr>
<td>N loci</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>NISP</td>
<td>0</td>
<td>0</td>
<td>34</td>
<td>441</td>
</tr>
<tr>
<td>MNI</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>220</td>
</tr>
<tr>
<td>NISP/m3</td>
<td>0</td>
<td>0</td>
<td>48</td>
<td>2/m3</td>
</tr>
<tr>
<td>N toxo</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Talla Media</td>
<td>0</td>
<td>0</td>
<td>615,3</td>
<td>423,23</td>
</tr>
</tbody>
</table>

Tabla 6.6. Principales variables analizadas en la comparación del registro ictioarqueológico en ambos sectores de BQ.
El estado de preservación de la muestra es bueno para todos los loci excavados y se observa que el promedio de completitud ósea (WMI) casi no presenta variaciones y se sitúa en torno al 76,5%. Sin embargo donde sí se observan variaciones es en la proporción de huesos indeterminados entre los sectores. En este sentido LN (justamente el sector con el NISP más alto), presenta los valores más elevados de la localidad (NSP/NISP=3,13), lo que implica un porcentaje relativamente alto de especímenes indeterminados.

Respecto de la diversidad de especies ícticas registrada en los conjuntos observamos que existen diferencias marcadas en la riqueza entre los distintos sectores. En este sentido se observa que el sector LN presenta el n taxa más alto de la localidad, con 12 especies representadas. Sin embargo, no se puede descartar que esta mayor riqueza pueda estar vinculada con el tamaño de la muestra, siendo que este sector es el que presenta el NISP más alto. Buscando minimizar el efecto del tamaño de la muestra se realiza el procedimiento de rarefacción, para comparar la diversidad entre los distintos sectores.

Las curvas de rarefacción (Figura 6.12) muestran que, a un mismo n, la curva de LN presenta la mayor pendiente, es decir alcanza la más alta riqueza de la localidad. Además, se observa que comparativamente con el resto de los sectores -que presentan curvas que tienden a la asintota entre los 50 y los 100 especímenes-, la curva de LN muestra tendencias de crecimiento a un n de 350 especímenes. El sector Terrazas es el menos rico de la localidad, posiblemente debido a un sesgo en la preservación de partes y especies y/o a uno vinculado con la recolección y visibilidad en los contextos superficiales. Esto puede vincularse directamente con los altos valores de dominancia registrados para este sector (D=0,99), lo que implica el total predominio de una especie (en este caso M. furnieri) en el conjunto. Exactamente una tendencia opuesta se observa en LN que presenta valores de dominancia muy bajos (D=0,17), lo que implica una distribución más homogénea de las especies en el conjunto. El resto de los sectores (1 y 3) presentan valores de dominancia más moderados (Tabla 6.7).
Enfocándonos en las comparaciones entre los dos sectores con evidencia ic-tioarqueológica recolectada en superficie, se observa que el sector Terrazas es donde se realizó el mayor número de muestreos (n=18), lo que puede ser una medida indirecta de la densidad y visibilidad del registro ic-tioarqueológico. Estas diferencias se expresan también respecto de la frecuencia en términos de NISP y MNI (Tabla 6.6) y de la densidad de restos por m² entre LN y Terrazas, siendo este último el que presenta la mayor densidad (2 restos/m²) sobre los 0,5 restos/m² de LN.

También se observan variaciones significativas (t=-4,07, p<0,01) en las tallas estimadas, entre ambos sectores. Los datos sugieren que en promedio los ejemplares de *M. furnieri* del Sector La Noria tienen tallas más grandes (X=615,3 mm) y presentan menor variación de tamaño (DE= 99,8 mm), que los del Sector Terrazas con tallas X=424,2 mm y DE=107,8 mm. Lo que podría implicar diferencias entre sectores en la selectividad de las técnicas de pesca y/o en los ambientes de pesca.

6.4.2 Tendencias en las pesas líticas

Como se observa en la tabla 6.8, existen variaciones en cuanto a la frecuencia de pesas líticas entre los diferentes sectores de BQ, siendo el sector Terrazas el que presenta en n más alto de la localidad. Respecto de las materias primas utilizadas para confeccionar las piezas no se observan variaciones significativas entre los sectores. En general predominan las variedades de rocas volcánicas (ácidas e intermedias básicas) aunque en proporciones diferentes. En lo que respecta a la técnica de modificación de las piezas, se observa que la percusión es predominante en todos los sectores con excepción del SEC 3, en donde la categoría principal es el piqueteado. Llama la atención el alto porcentaje de piezas con surco en el SEC 1, aunque observando los valores absolutos sólo representan a un individuo, en una muestra de 3 (ver más arriba). Los sectores que presentan mayor diversi-

<table>
<thead>
<tr>
<th>SECTOR</th>
<th>N</th>
<th>NISP</th>
<th>Dominancia</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEC 3</td>
<td>7</td>
<td>407</td>
<td>0.4448</td>
</tr>
<tr>
<td>LN</td>
<td>12</td>
<td>332</td>
<td>0.1787</td>
</tr>
<tr>
<td>SEC 1</td>
<td>8</td>
<td>418</td>
<td>0.4029</td>
</tr>
<tr>
<td>TERRAZAS</td>
<td>2</td>
<td>409</td>
<td>0.9903</td>
</tr>
</tbody>
</table>

Tabla 6.7. Índices de diversidad de Simpson.

Figura 6.13. Box plot de las tallas estimadas (mm) entre sectores.

Figura 6.13. *Box plot* de las tallas estimadas (mm) entre sectores.
dad respecto de la variedad de técnicas empleadas son LN y Terrazas (pero también registraron la mayor cantidad de estos instrumentos), aunque todo el espectro de modificaciones se restringe a unos pocos tipos. Esto deja ver el bajo grado de modificación que presentan estas piezas, que parecen tener una mayor inversión de energía en la selección de las formas bases naturales (guijarros de playa), que en la modificación posterior.

Figura 6.14. Variables tecnológicas contempladas para las pesas líticas de la localidad BQ.

Respecto del eje de modificación de las pesas, se observa dos tendencias principales. Por un lado se encuentran LN y Terrazas que presentan proporciones rela-
ativamente homogéneas de modificaciones en el eje longitudinal y transversal, aunque en ambos sectores se registra un leve predominio del transversal. En cambio, el SEC 1 y SEC 3 muestran el predominio más marcado de alguna de las categorías. En el caso del SEC 1, el eje longitudinal es el que claramente predomina en la muestra (aunque hay que ser cautos con estas tendencias ya que la muestra es muy pequeña), en cambio en el SEC 3, es el eje transversal el que tiene preponderancia por sobre las demás categorías.

Tampoco se observan variaciones significativas entre conjuntos en relación a las variables métricas. En líneas generales todos los sectores presentan piezas con pesos similares y no se pudieron establecer diferencias significativas entre los conjuntos (p>0,05), aunque se observa que las pesas de LN son en promedio más livianas que las del resto de los sectores (Tabla 6.8). Iguales tendencias se observan respecto de la forma (índice ancho/largo), y el espesor de las piezas (índice de Robustez). La media del índice A/L para todos los sectores oscila entre 0,70 y 0,75, es decir valores altos, lo que implica morfologías relativamente redondeadas y pocas piezas alargadas y finas. En tanto que los valores promedio del índice de robustez, se sitúan entre 0,19 y 0,25, lo que implica piezas delgadas en su sección lateral.

<table>
<thead>
<tr>
<th></th>
<th>SEC 1</th>
<th>SEC 3</th>
<th>LN</th>
<th>TERRAZAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frecuencia</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>19</td>
</tr>
<tr>
<td>Peso (g)</td>
<td>139,6</td>
<td>136,9</td>
<td>132</td>
<td>141,8</td>
</tr>
<tr>
<td>I. A/L</td>
<td>0,74</td>
<td>0,74</td>
<td>0,70</td>
<td>0,75</td>
</tr>
<tr>
<td>I. ROBU</td>
<td>0,25</td>
<td>0,22</td>
<td>0,19</td>
<td>0,20</td>
</tr>
</tbody>
</table>

Tabla 6.8. Estadística descriptiva de las pesas líticas recolectadas en los diferentes sectores de la localidad.

En resumen, los datos indican poca variación tanto a nivel tecnológico como métrico entre los distintos sectores de esta localidad, lo que tal vez podría vincularse con un uso homogéneo de estas piezas en distintos contextos.

6.5 Breve síntesis

En conjunto, el cuerpo de datos presentados y discutidos en este capítulo muestra las pautas generales del registro pesquero en la localidad Bajo de la Quinta. Los resultados evidencian una intensa señal pesquera para la localidad, con un gran cúmulo de datos proveniente de sondeos y de loci superficiales. De igual forma que lo observado en otras localidades, la muestra proveniente de BQ alcanza una gran diversidad en el registro ictioarqueológico, al menos 14 taxa fueron registradas. Todas corresponden a especies litorales que pueden ser capturadas desde distintos puntos de la costa. La diversidad de especies icticas registrada incluye al ensamble de peces que habitan los arrecifes costeros patagónicos. Con excepción del sector Terrazas todos los conjuntos presentan muestras relativamente homogéneas y ricas (a nivel de especies). El caso de Terrazas, merece un análisis particular ya que corresponde a un conjunto de loci únicamente superficiales, en donde la diversidad de especies detectada alcanza una riqueza de dos, es decir muy baja. Sin embargo, es posible que estos conjuntos se encuentren
afectados por factores de preservación diferencial a favor de ciertos elementos más duros y visibles arqueológicamente (e.g. otolitos).

En definitiva, entonces, la diversidad de especies explotadas en la localidad muestra una estrategia de pesca costera focalizada en los recursos ícticos de las plataformas litorales, tal vez a partir de técnicas de pesca selectivas (ver discusión Capítulo 9), aunque aprovechando también una serie de recursos pesqueros de fondos blandos (por ejemplo, esciéñidos) a partir de técnicas más masivas tipo redes. En este sentido también en todos los sectores del área se registraron pesas líticas aunque con marcadas variaciones en cuanto a la frecuencia, llamativamente la mayor presencia de pesas se correlaciona directamente con los conjuntos donde mayor cantidad de otolitos fueron recolectados.

En conjunto estas evidencias sugieren una fuerte impronta pesquera en la localidad, explotando un ensamble de recursos vinculados a un ambiente en particular (arrecifes costeros patagónicos), aprovechando alternativamente otros recursos con características bio-ecológicas y hábitos disimiles. Asimismo también se observan variaciones entre los conjuntos de la localidad, lo que sugiere un uso desigual de los distintos ambientes a nivel local.
LA LOCALIDAD ARQUEOLÓGICA BAHÍA SAN ANTONIO

7.1 Introducción

Esta enorme localidad arqueológica incluye a la ciudad de San Antonio Oeste (SAO). La bahía homónima presenta un ambiente de playas arenosas y fangosas con amplias marismas sometidas a los regímenes de marea (entre seis y nueve metros). Durante la bajamar se forman canales, pozones y brazos de marea (Perrier, 1994) que permiten acceder a variados recursos litorales, entre ellos una gran diversidad de aves, moluscos y peces (Figura 7.1).

Figura 7.1. Imagen de la localidad arqueológica BSA. Ver sector SAO y Sector SV.

Aquí se localizaron un gran número de loci en diferentes ambientes costeros e inmediatamente interiores. El registro arqueológico es muy variado, observándose tanto concentraciones de material lítico, entre los que se destaca la presencia de las pesas líticas, asociado a otolitos de peces y en algunos casos (Saco Viejo en particular) el hallazgo aislado de tiestos cerámicos más o menos dispersos (ver Moldes de Entraigas, 1977 y Borges Vaz, 2013), como también concheros con variada fauna marina y terrestre. La cronología disponible hasta el momento para este sector indica ocupaciones humanas entre ca. 5.000 a 400 años AP.

De un total de siete sondeos excavados, en cinco se recuperaron restos ictioarqueológicos. En tal sentido la muestra proveniente de sondeos asciende a los 5.766 especímenes, de los cuales 3.051 fueron identificados a nivel taxonómico y
anatómico y 2.715 resultaron indeterminados (esta categoría incluye a los restos únicamente identificados a nivel anatómico y a los fragmentos indiferenciados). Asimismo se incluyó el material proveniente de nueve muestreos superficiales que arrojaron un total de 344 otolitos y 59 pesas líticas. A continuación se presentan los conjuntos correspondientes a dos áreas dentro de esta extensa localidad: SAO y Saco Viejo (SV).

7.2 El registro pesquero recuperado en sondeos

7.2.1 Aspectos contextuales y formacionales

Al igual que en otras localidades del área, los sondeos realizados en la localidad BSA corresponden a pequeñas muestras que en ningún caso superan los 0,3 m3. Como puede observarse en la Figura 7.2, los peces son un componente destacado en las 5 muestras analizadas, con representaciones que en todos los casos superan el 75% del NISP total. A nivel general siempre se presentan de forma agrupada en puntos del espacio donde su densidad alcanza valores altos (en promedio 5362,5 restos ícticos/m3).

Figura 7.2. NISP% de la diversidad faunística en los sondeos de BSA. El grupo Mammalia 1 representa a las especies mayores (lobos marinos y guanacos), en tanto que el grupo Mammalia 2 se refiere a las especies menores (roedores, cánidos, felinos, entre otros).
A nivel general la muestra ictioarqueológica recuperada en los sondeos presenta un buen estado de preservación, con valores de completitud ósea promedio estimados en 81,08%. Asimismo el porcentaje promedio de huesos INDET, presenta valores bajos en torno al 35,7%, aunque dos conjuntos (PC1 y PC2) presentan valores significativamente más altos, lo que también queda manifiesto en la relación NSP/NISP (Tabla 7.1). Respecto de las modificaciones culturales, en ningún caso se observaron huellas atribuibles a cortes, aunque sí se observaron restos (principalmente vértebras) con evidencias de alteración térmica (en promedio cerca del 6,5%). Finalmente sólo en un sondeo (SV C. S1) se observaron unos pocos huesos con deformaciones plásticas (0,29%).

<table>
<thead>
<tr>
<th>Locus</th>
<th>PC Sond 1</th>
<th>PC Sond 2</th>
<th>Saco Viejo Sond 1</th>
<th>Saco Viejo Sond 2</th>
<th>Saco Viejo Sond 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumen excavado</td>
<td>0,2 m³</td>
<td>0,3 m³</td>
<td>0,2 m³</td>
<td>0,2 m³</td>
<td>0,2 m³</td>
</tr>
<tr>
<td>% Peces</td>
<td>99</td>
<td>100</td>
<td>93.59</td>
<td>76.24</td>
<td>100</td>
</tr>
<tr>
<td>NSP Peces</td>
<td>2,330</td>
<td>1,210</td>
<td>2,001</td>
<td>138</td>
<td>87</td>
</tr>
<tr>
<td>Densidad</td>
<td>11,650 m⁻³</td>
<td>4,031 m⁻³</td>
<td>10,000 m⁻³</td>
<td>690 m⁻³</td>
<td>435 m⁻³</td>
</tr>
<tr>
<td>% INDET</td>
<td>60%</td>
<td>54%</td>
<td>29%</td>
<td>16%</td>
<td>19,5%</td>
</tr>
<tr>
<td>NSP/NISP</td>
<td>2,6</td>
<td>2,18</td>
<td>1,4</td>
<td>1,18</td>
<td>1,24</td>
</tr>
<tr>
<td>% WMII</td>
<td>75,53</td>
<td>75,21</td>
<td>82,54</td>
<td>85,21</td>
<td>87</td>
</tr>
<tr>
<td>% Alt. Térmica</td>
<td>9,6</td>
<td>5,5</td>
<td>12,64</td>
<td>1,15</td>
<td>3,4</td>
</tr>
<tr>
<td>% Deformación</td>
<td>0</td>
<td>0</td>
<td>0,29</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabla 7.1. Tabla resumen de las variables contempladas en el análisis contextual y formacional de todos los sondeos excavados en BSA.

7.2.2 Diversidad taxonómica

La exploración de los datos respecto de la diversidad taxonómica (Tabla 7.2) muestra que las especies no se distribuyen de una manera homogénea entre loci, por lo que existirían muestras diversas y otras que tienden a estar representadas por una única especie. Esto último es esperable dentro de conjuntos de diferente tamaño, ya que riqueza taxonómica y tamaño muestral tienden a estar correlacionados entre sí, mientras que la distribución de las especies dentro de la muestra (frecuencia relativa) depende de aspectos formacionales (tasa de descarte y preservación diferencial).

<table>
<thead>
<tr>
<th></th>
<th>PC 1</th>
<th>PC 2</th>
<th>SV C 1</th>
<th>SV H 2</th>
<th>SV H 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>N taxa</td>
<td>6</td>
<td>4</td>
<td>9</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>NSP</td>
<td>890</td>
<td>554</td>
<td>1,421</td>
<td>136</td>
<td>70</td>
</tr>
<tr>
<td>Dominancia</td>
<td>1</td>
<td>1</td>
<td>0,3</td>
<td>0,4</td>
<td>0,4</td>
</tr>
</tbody>
</table>

Tabla 7.2. Índices de diversidad de Simpson.

La rarefacción sobre todas las muestras permitió estimar la cantidad de clases promedio esperada para los cinco loci analizados (Figura 7.3).
Figura 7.3. Curvas de rarefacción para todos los sondeos de BSA, estimadas a un valor de 70 especímenes (la muestra más baja).

Se pueden diferenciar a simple vista conjuntos con alta riqueza relativa, como SV PC1, SV H2 y SV H3 y otros que alcanzan la asintota a niveles de diversidad muy bajos como SV H3, lo que sugiere que poseen un menor número taxones. Asimismo, la forma de las curvas informa sobre diferencias en la homogeneidad de los conjuntos, donde las muestras más heterogéneas formarán curvas de pendiente baja, que no alcanzarán la asintota o se aproximarán a ella muy gradualmente, como por ejemplo PC 1 y PC 2 (ver también tabla 7.2). Las curvas muestran que independientemente del número de especímenes existen loci mucho más diversos y otros más pobres. Para un mismo tamaño de muestra de 70 especímenes (la muestra más baja) recolectados al azar, SV C1, presenta una media de 7,8 espécies; lo siguen en orden decreciente SV H2=4,0; SV H3= 3,0; PC1=2,0; PC2=0,9.

Finalmente, la morfología de la curva puede ser utilizada para predecir variaciones en la riqueza de los conjuntos en la medida en que se vayan incorporando nuevas muestras bajo condiciones de muestreo semejantes. En este sentido, sería esperable que PC1, PC2 y SV H2 alcancen valores de riqueza más alto si se incrementara la muestra. En cambio los análisis sugieren que SV H3 y SV C1 alcanzaron la asintota, es decir por más que se incluyan nuevas muestras existen bajas probabilidades de un aumento en la riqueza de clases. Como se observa en la Figura 7.3 (a) mientras que SV H3 requiere un n=30 especímenes para alcanzar la asintota, SV C1 la alcanza luego de los 160.

Otro aspecto que se vincula directamente con la riqueza, tiene que ver con la distribución de las diferentes especies en los conjuntos. En este sentido se observan variaciones entre los loci analizados, ya que PC 1 y PC 2 presentan el máximo de dominancia posible (D=1), lo que implica conjuntos monoespecíficos. En cambio SV C1, SV H2 y SV H3 muestran una distribución en la representación de clases mucho más homogénea, con valores de dominancia de 0,3 y 0,4 respectivamente (Tabla 7.2).

Como se observa en la Figura 7.4 la variabilidad de las especies en los diferentes sondeos es más bien baja, pese a que se observan al menos ocho especies representadas, solo cinco se encuentran en altas proporciones. La especie más común de la localidad (respecto a la representación en todos los sondeos) es *D. argenteus* y la siguen *Odontesthes* sp. y *A. patachonicus*. Con excepción de *Odontesthes* sp. todas las especies correspondientes al ensamble de peces de los arrecifes patagónicos (ver Capítulo 2). Al igual que lo observado en otras localidades (ver
Capítulos 5, 6 y 8) estos peces se encuentran disponibles en los ambientes litorales inmediatamente contiguos a la localidad. En la actualidad D. argenteus es la principal presa íctica para la pesquería artesanal en la bahía San Antonio (González, et al., 2010).

Figura 7.4. Variaciones porcentuales de los diferentes taxones representados en los sondeos de BSA.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>PC-Sondeo 1</th>
<th>PC-Sondeo 2</th>
<th>SV Casería-Sondeo 1</th>
<th>SV Histórico-Sondeo 2</th>
<th>SV Histórico-Sondeo 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NISP %</td>
<td>MN %</td>
<td>NISP %</td>
<td>MN %</td>
<td>NISP %</td>
</tr>
<tr>
<td>A. patagonicus</td>
<td>2</td>
<td>1.08</td>
<td>1</td>
<td>7.14</td>
<td>0.08</td>
</tr>
<tr>
<td>B. argenteus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D. argenteus</td>
<td>872</td>
<td>37.4</td>
<td>60</td>
<td>86.9</td>
<td>550</td>
</tr>
<tr>
<td>E. maclovinus</td>
<td>7</td>
<td>0.3</td>
<td>1</td>
<td>2.2</td>
<td>3</td>
</tr>
<tr>
<td>M. furneri</td>
<td>0.2</td>
<td>2</td>
<td>4.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Odontesthes sp.</td>
<td>1</td>
<td>0.04</td>
<td>1</td>
<td>2.2</td>
<td>-</td>
</tr>
<tr>
<td>P. brasiliensis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P. porosimus</td>
<td>4</td>
<td>0.2</td>
<td>1</td>
<td>2.2</td>
<td>-</td>
</tr>
<tr>
<td>Serranidae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Siluriforme</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>INDENT.</td>
<td>1440</td>
<td>61.8</td>
<td>656</td>
<td>54.2</td>
<td>584</td>
</tr>
<tr>
<td>TOTALES</td>
<td>2330</td>
<td>100</td>
<td>46</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Tabla 7.3. Diversidad taxonómica para los sondeos excavados en BSA. Número de especímenes identificados (NISP) y su valor porcentual y número mínimo de individuos (MNI) y su valor porcentual.
7.2.3 Representación anatómica

La evaluación en torno a los perfiles anatómicos se centrará en las tres especies más frecuentes de la localidad: *D. argenteus; A. patachonicus* y *Odontesthes* sp. (los datos correspondientes a las demás especies pueden ser consultados en el apéndice -Tablas A.14 a A.18-).

Al analizar la representación de partes de *D. argenteus* hay que considerar las diferencias en el tamaño de las muestras (Tabla 7.3). En este sentido, como se observa en la Figura 7.5, los perfiles anatómicos de la especie para PC 1, PC 2 y SV C1 no presentan diferencias. En los tres casos se registra el predominio de elementos axiales (vértebrae principalmente), seguido por partes correspondientes al cráneo, mientras que el esqueleto apendicular se encuentra en bajos porcentajes de representación. Los otros dos sondeos, SV H2 y SV H3 presentan tendencias diferentes a la anterior y diferentes entre ellos. Sin embargo, estos patrones deben ser analizados con mesura ya que en ambos casos la frecuencias de restos es muy baja (SV H2=1 y SV H3=10).

![Figura 7.5. Porcentaje del número mínimo de elementos de *D. argenteus* para los sondeos de BSA.](image)

De igual forma para *D. argenteus*, las comparaciones entre loci en la representación de partes para *A. patachonicus* se ven influenciadas por la diferencia en el tamaño de la muestra. En este sentido, las muestras de PC 1, PC 2 y SV H2 son extremadamente bajas (n= 2, 1 y 2 respectivamente) como para permitir una comparación confiable acerca de las partes representadas. Los dos conjuntos restantes (SV C1 y SV H3), que al menos presentan un n>30, muestran tendencias similares en cuanto a la representación porcional del MNE. En ambos todas las regiones anatómicas se encuentran representadas aunque en proporciones variables. Predominan los elementos correspondientes al esqueleto axial (entre 45% y 65%), continúa en representación el cráneo con valores entre 25% y 39% y finalmente el esqueleto apendicular se presentan en porcentajes bajos entre 5% y 7%.
Figura 7.6. Porcentaje del número mínimo de elementos de *A. patachonicus* para los sondeos de BSA.

Finalmente para el caso de *Odontesthes* sp. también se observaron variaciones en el tamaño de la muestra. El caso más sobresaliente corresponde a PC1 con n=1 espécimen. El resto de los conjuntos presentan muestras mayores a 30. A nivel general se observa que las estimaciones a partir del MNE% muestran tendencias similares para todos los conjuntos. Se observa un predominio marcado de los elementos correspondientes al esqueleto axial. Asimismo, solo en dos sondeos se detectaron partes correspondientes al esqueleto craneal, que en ambos casos se encuentra en porcentajes bajos (5% y 18%). En lo que respecta al esqueleto apendicular la Figura 7.7 muestra que esta porción anatómica solo fue registrada en bajos porcentajes (1,3%) en un sondeo.

Figura 7.7. Porcentaje del número mínimo de elementos de *Odontesthes* sp. para los sondeos de BSA.

En síntesis entonces, pese a las diferencias en los tamaños de las muestras, las tendencias en la representación relativa de partes por especies no presentan variaciones de importancia. Las partes anatómicas presentan diferencias relativas
en su representación, pero varían de forma uniforme entre los distintos loci. Estas tendencias también son observadas en las especies minoritarias a partir del MAU% (Tabla A.14 a A.18 del apéndice). En este sentido consideramos que, en principio, factores como el descarte y el procesamiento diferencial no serían procesos disturbadores significativos en estos conjuntos.

7.3 El registro pesquero recuperado en superficie

7.3.1 Restos óseos y otolitos

En esta localidad se realizaron más de nueve muestreos superficiales en los que se recolectaron, entre otras evidencias arqueológicas como desechos líticos, pesas, y restos faunísticos, (Favier Dubois y Scartascini, 2012), 344 otolitos de peces. La densidad promedio para todos los loci asciende a 1,58 otolitos/m², aunque existen algunos loci con mayor densidad (Camino ALPAT: 4/m² y SV: 5/m²).

En términos generales, predominan ampliamente los especímenes pertenecientes a M. furnieri, con una frecuencia de 340 otolitos (es decir 98,83%) y un MNI estimado en 158 ejemplares. La muestra restante, es decir 4 otolitos (MNI=2), corresponde a U. canosai, otra especie de escleriónido de aspecto muy similar a M. furnieri.

A nivel general, la muestra evidencia buen estado de preservación, con 273 (79,36%) ejemplares enteros, 35 (10,1%) levemente fragmentados (es decir que posibilitaron su análisis métrico) y 33 (9,59%) fragmentados.

<table>
<thead>
<tr>
<th>Sector</th>
<th>Locus</th>
<th>Latitud S</th>
<th>Longitud O</th>
<th>Tamaño</th>
<th>N</th>
<th>MNI</th>
<th>Dens. /m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAO</td>
<td>C. ALPAT ini</td>
<td>40.74401667</td>
<td>-64.9734</td>
<td>4m²</td>
<td>16</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>No K</td>
<td>40.7437</td>
<td>64.97370833</td>
<td>50m²</td>
<td>26</td>
<td>15</td>
<td>0,52</td>
</tr>
<tr>
<td></td>
<td>PC</td>
<td>40.73505</td>
<td>64.95998889</td>
<td>100m²</td>
<td>50</td>
<td>27</td>
<td>0,50</td>
</tr>
<tr>
<td></td>
<td>PP</td>
<td>40.74288333</td>
<td>64.97275</td>
<td>50m²</td>
<td>79</td>
<td>23</td>
<td>1,58</td>
</tr>
<tr>
<td></td>
<td>PP m1</td>
<td>40.74288889</td>
<td>64.97277778</td>
<td>25m²</td>
<td>31</td>
<td>15</td>
<td>1,24</td>
</tr>
<tr>
<td></td>
<td>Sao Duna Vivero</td>
<td>40.74038889</td>
<td>64.96619444</td>
<td>50m²</td>
<td>36</td>
<td>22</td>
<td>0,72</td>
</tr>
<tr>
<td>SV</td>
<td>SV 1</td>
<td>40.810004722</td>
<td>64.76814444</td>
<td>100m²</td>
<td>47</td>
<td>24</td>
<td>0,47</td>
</tr>
<tr>
<td></td>
<td>SV 2</td>
<td>40.815225</td>
<td>64.76647778</td>
<td>100m²</td>
<td>19</td>
<td>13</td>
<td>0,19</td>
</tr>
<tr>
<td></td>
<td>SV</td>
<td>8m²</td>
<td>40</td>
<td>22</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>344</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 7.4. Localización, frecuencia, número mínimo de individuos y densidad/m² de los otolitos recolectados en superficie en BSA.
7.3.1.a Análisis de tallas sobre otolitos

Para todos los otolitos de *M. furnieri* recuperados en esta localidad la estimación de tallas arrojó tamaños congruentes con individuos adultos actuales de la misma especie, es decir mayores a 360 mm. De hecho, el promedio de tallas para BSA es de $X=520.2$ mm de longitud total, con un desvío estándar (D.E.)=115.4 mm, lo que implica ejemplares de gran tamaño.

Como la muestra no cumple los criterios para un análisis paramétrico se utilizó el test de Kruscal Wallis sobre las medianas, que señala diferencias significativas (KW=112,2, p<0,001). Para comparar entre pares se utilizó la corrección de Bomferroni, que es la más conservadora, y se detectó que los loci de SV son significativamente diferentes a los de SAO.

![Box-plot de las tallas estimadas (mm) de *M. furnieri* en BSA.](image)

7.3.2 Pesas líticas

La muestra total de pesas líticas recolectadas en esta localidad alcanza las 59 piezas. Estos artefactos provienen de un único sector de esta extensa localidad, el sector SAO. Los loci PC y PP son los más numerosos con 29 y 24 piezas respectivamente y representan casi el 89,8% de la muestra total.

Los análisis tecnológicos realizados muestran el predominio de la percusión unifacial (44% del total), seguido por la percusión y el piqueteado bifacial (34%) como las técnicas de formatización de los artefactos. Asimismo se observó cierta paridad respecto del eje de modificación de la pieza, aunque con una leve tendencia hacia el eje transversal (53% de los casos). Respecto de las materias primas utilizadas para confeccionar estos artefactos, se observó el predominio de las volcanitas (con porcentajes cercanos al 85%) – acidas: 37%; intermedias básicas: 48%-, todas de origen local y disponibilidad inmediata.
A partir del largo, ancho y espesor se calcularon dos índices que pudieran describir de una forma simple algunos aspectos de la forma de estos artefactos. Para estimar si las piezas presentan formas redondeadas o tabulares, se calculó el índice ancho/largo (ver Capítulo 4). En este sentido se observa que todas las pesas recuperadas en esta localidad presentan valores entre 0,57 y 0,96, con una mayor frecuencia en torno a 0,75 es decir formas tendientes a la redondez (ver Figura 7.9).

Por su parte para estimar si la pieza presenta una sección plana o más bien esférica se calculó el índice de robustez (ver Capítulo 4). Como sugiere la Figura 7.10, la mayor parte de las pesas líticas recuperadas en BSA se concentran en los valores cercanos a 0, es decir presentan una sección más bien chata o aplanada. Sólo se observan unos pocos ejemplares con valores más altos (en torno a 0,4), es decir formas más espesas y más robustas. La distribución sugiere la selección...
deliberada de artefactos con cierto grado de robustez en particular, principalmente entre 0,15 y 0,22, es decir formas más bien achatadas.

![Histograma de frecuencias para el índice de robustez (0-1) de las pesas líticas recolectadas en BSA.](image)

Finalmente en lo que se refiere al peso, los análisis muestran una distribución bimodal de valores: uno de pesos pequeños entre 30 y 70 grs.; y el otro de pesos más elevados con valores entre 100 y 160 grs. (Figura 7.11). Esto no implica la ausencia de valores intermedios sino un aumento en los picos de frecuencia en estos dos intervalos. Esta distribución muestra dos tipos de pesas diferenciables: unas más livianas y otras más pesadas, lo que tal vez pueda vincularse con las técnicas y las estrategias de pesca desarrolladas.

![Histograma de frecuencias para el peso (g) de las pesas líticas recolectadas en BSA.](image)
7.4 Principales tendencias y comparaciones entre sectores

Como ya fue sugerido anteriormente, los distintos sectores de muestreo en esta extensa localidad muestran características geográficas, ambientales y arqueológicas disimiles. Por esta razón se plantea a continuación una comparación entre los mismos, que permita discutir las principales características del registro pesquero en cada área y evaluar cómo las condiciones microambientales pueden haber influenciado la actividad pesquera en el pasado.

7.4.1 Tendencias en el registro ictioarqueológico

Al establecer comparaciones entre los distintos sectores dentro de la localidad, observamos algunos patrones que nos permiten evaluar las principales tendencias y realizar una breve síntesis del registro pesquero de la localidad. La proveniencia de la muestra para ambos sectores es similar ya que en ambos casos se detectaron conjuntos ictioarqueológicos en contextos superficiales y en sondeos.

Respecto de las muestras provenientes de sondeos se observa una diferencia marcada en el NISP total entre ambos sectores. La muestra más numerosa (en términos de NISP y MNI) proviene de SAO, pese a que en este sector el número de muestreos es levemente inferior (Tabla 7.6). Estas diferencias se observan también en relación a la densidad de restos recuperados en ambos sectores. De hecho SAO presenta una densidad promedio que supera dos veces la observada en SV (7841 vs. 3683 restos/m³).

<table>
<thead>
<tr>
<th></th>
<th>SAO</th>
<th>SV</th>
</tr>
</thead>
<tbody>
<tr>
<td>N loci</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>NISP</td>
<td>3540</td>
<td>2226</td>
</tr>
<tr>
<td>MNI</td>
<td>60</td>
<td>53</td>
</tr>
<tr>
<td>NISP/m²</td>
<td>7841,5/m²</td>
<td>3683/m²</td>
</tr>
<tr>
<td>WMI</td>
<td>75,30%</td>
<td>78,66%</td>
</tr>
<tr>
<td>NSP/NISP</td>
<td>2,39</td>
<td>1,27</td>
</tr>
<tr>
<td>N taxa</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Dominancia</td>
<td>1</td>
<td>0,36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>SAO</th>
<th>SV</th>
</tr>
</thead>
<tbody>
<tr>
<td>N loci</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>NISP</td>
<td>240</td>
<td>104</td>
</tr>
<tr>
<td>MNI</td>
<td>108</td>
<td>52</td>
</tr>
<tr>
<td>NISP/m²</td>
<td>1,42/m²</td>
<td>1,73/m²</td>
</tr>
<tr>
<td>N taxa</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Talla Media</td>
<td>508</td>
<td>542</td>
</tr>
</tbody>
</table>
Tabla 7.6. Principales variables analizadas en la comparación del registro ictioarqueológico en ambos sectores de BSA.

No se observan diferencias entre ambos sectores respecto al promedio en el índice de completitud ósea (WMI), registrándose en ambos casos valores entre 75% y 78%, lo que implica una buena preservación de los huesos. Sin embargo, existe una gran variación en la frecuencia de huesos indeterminados entre los sectores. Como se observa a partir de la relación NSP/NISP, la muestra de SAO presenta casi el doble de restos indeterminados que la de SV, lo que tal vez en parte pueda explicar las diferencias en el NISP en ambas muestras. Sin embargo, el aspecto en el que presentan mayor variación ambas muestras es respecto a la diversidad taxonómica. Como se observa en la tabla 7.6, existen diferencias claras en relación a la riqueza relativa entre los dos sectores. Los análisis de diversidad muestran que la muestra de SAO es más rica que la de SAO. Como se observa en la Figura 7.12, mientras que en SAO se requiere una gran aumento en la muestra para alcanzar una riqueza promedio de cinco especies, SV alcanza muy rápidamente (n=160) y genera una asintota en una riqueza promedio de 9 especies. Esto indica que este último conjunto posee mayor heterogeneidad y menor riqueza que el de Saco Viejo, independientemente del tamaño de ambas muestras.

![Figura 7.12. Curvas de rarefacción para los dos sectores de la localidad arqueológica BSA.](image)

Finalmente, y vinculado con la diversidad taxonómica está la dominancia, es decir la forma en que las especies se distribuyen en la muestra, aspecto que también presenta importantes variaciones entre los dos conjuntos. Como se observa en la Tabla 7.6, mientras que SAO presenta el valor más alto posible, es decir D=1, SV presenta un índice de dominancia más bien bajo (D=0,36). Esto implica que la muestra de SAO es muy heterogénea y sólo una especie domina todo el conjunto (en este caso D. argenteus), mientras que la distribución de SV es comparativamente más homogénea y ninguna especie domina sobra el resto.

Enfocándonos en la comparaciones entre ambos sectores a partir de la evidencia ictioarqueológica recolectada en superficie, la primera diferencia observada tiene que ver con la cantidad de muestreos realizados. En SAO se realizaron el doble de muestreos que en SV (Tabla 7.6), lo que se ve reflejado en la frecuencia de restos recolectados en ambos casos. En consonancia con esto la frecuencia SAO duplica (en términos de NISP y MNI) la observada en SV. Sin embargo al evaluar la densidad de restos por m², no se observan diferencias entre sectores. Tampoco
existe variación respecto de la riqueza de especies detectadas ya que en ambos ca-
sos el N \textit{taxa} es igual a dos.

En el único punto en el que se observan variaciones significativas aunque le-
ves entre ambos sectores ($t=-2.41$, $p<0.05$) es en las tallas estimadas a partir de la
medición de los otolitos. Los datos sugieren que en promedio los ejemplares de \textit{M. furnieri} del Sector SV tienen tallas más grandes ($X=542.3$ mm) y presentan menor
variación de tamaño (DE= 103.5 mm), que los de SAO con tallas $X=508.8$ mm y
DE=119.3 mm (Ver Figura 7.13). Lo que podría implicar diferencias entre sectores
en la selectividad de las técnicas de pesca y/o en los ambientes de pesca.

<table>
<thead>
<tr>
<th></th>
<th>SAO</th>
<th>SV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frecuencia</td>
<td>200</td>
<td>103</td>
</tr>
<tr>
<td>Mínimo</td>
<td>243</td>
<td>346.3</td>
</tr>
<tr>
<td>Máximo</td>
<td>815.2</td>
<td>716.2</td>
</tr>
<tr>
<td>Media</td>
<td>508.8</td>
<td>542.3</td>
</tr>
<tr>
<td>Varianza</td>
<td>14241.8</td>
<td>10713.8</td>
</tr>
<tr>
<td>Desv. Est.</td>
<td>119.3</td>
<td>103.5</td>
</tr>
</tbody>
</table>

Tabla 7.7. Estadística descriptiva de la talla estimada de \textit{M. furnieri} (mm) para ambos
sectores de la localidad.

Figura 7.13. \textit{Box-plot} de las tallas estimadas entre sectores.

\textbf{7.4.2 Tendencias en las pesas líticas}

Como ya se observó en el punto 3.2 de este capítulo y pese a los esfuerzos de
muestreo en el sector SV, no se detectaron aún pesas líticas. En este sentido la
muestra de estos artefactos para la localidad provienen solo del sector SAO y sus
principales tendencias ya han sido desarrolladas anteriormente.
7.5 Breve síntesis

En este capítulo examinamos la evidencia pesquera procedente de los conjuntos arqueológicos de la localidad Bahía San Antonio (BSA). En conjunto los análisis muestran que los peces son una categoría dominante en gran parte de las muestras analizadas. La diversidad de peces explotada alcanza las ocho especies, lo que implica un número bajo en comparación con otras localidades. Las especies más común e intensamente explotadas son *D. argenteus*, *P. patachonicus* y *P. brasili anus*. De igual forma que lo observado en otras localidades, a nivel general se destacan las especies correspondientes al ensamble de peces de los arrecifes pata- gónicos. Llama la atención además lo observado en los conjuntos de SAO en donde la diversidad ictiofaunística es muy baja –representan casi muestras monoespecíficas– siendo *D. argenteus* la presa predilecta. La información actual respecto de la presencia de esta especie en la Bahía San Antonio, muestra un comportamiento estacional, con una gran disponibilidad de ejemplares durante el otoño (Ver Capítulo 2; Irigoyen y Galván, 2010).

Más allá de que existen variaciones contextuales entre los distintos sectores de la localidad ambos se encuentran directamente vinculados con la Bahía San Antonio, es decir canales de marea, marismas y una serie de microambientes particulares dentro de esta macro geoforma marina. En este sentido entonces no sorprende que ambos sectores presenten un registro pesquero similar en cuanto a la proveniencia, diversidad y estructura, aunque a nivel general Saco Viejo parecería ser más diverso (en términos de riqueza de especies) que San Antonio Oeste.

El registro superficial recolectado muestra la importancia de la pesca en diferentes puntos de la localidad. Como sucede en otras localidades se observó una gran cantidad y densidad de otolitos en superficie (principalmente de *M. furnieri*), lo que nos permite evaluar y discutir los distintos escenarios de pesca en ambientes de alta dinámica, como son los costeros.

Finalmente el registro de pesas líticas solo fue detectado en San Antonio Oeste, lo que posiblemente tenga implicaciones para discutir las técnicas y estrategias de pesca en ambos sectores (ver Capítulo 9).
LAS LOCALIDADES ARQUEOLÓGICAS PUNTA ODRIOZOLA Y ARROYO VERDE

8.1 Introducción

En este capítulo se presentan los datos pesqueros correspondientes a dos localidades arqueológicas que se ubican en el tramo oeste de la costa del GSM. La localidad arqueológica Punta Odriozola se encuentra emplazada en una extensa área dominada por un gran manto de dunas (casi único en todo este tramo costero). El registro arqueológico está constituido por abundante material lítico en superficie (pesas, morteros y desechos) (Alberti y Cardillo, 2013) además de varios asomos de concheros localizados en diferentes ambientes que incluyen holladas de deflación y terrazas, los que fueron identificados como sectores para un mejor relevamiento de la información arqueológica. En la excavación de los sondeos se recuperó variada fauna, tanto marina como terrestre (Borella et al., 2013, Borella y L’Heureux, 2013). Finalmente cabe mencionar que en esta localidad se registraron las primeras y únicas evidencias de arte rupestre para toda la costa patagónica (Borella et al., 2013). Los fechados obtenidos en el área se agrupan en torno a los 3000 años AP. En conjunto se realizaron siete sondeos en tres sectores de esta extensa localidad, en cuatro de los cuales se recolectaron restos de peces (Borella et al., 2013).

Figura 8.1. Localidad Arqueológica Punta Odriozola y los loci analizados.

Por su parte Arroyo Verde es la localidad de la costa rionegrina que ha entregado hasta el momento el fechado más temprano de 7400 años AP (Gómez Otero, 2007), para la costa patagónica. Se encuentra emplazada en un área de médanos litorales erosionados, próximos a la desembocadura del arroyo homónimo. La evi-
La totalidad de la muestra estudiada fue recuperada en la excavación de los sondeos correspondientes únicamente a la localidad Punta Odriozola. En todos los casos se tratan de pequeñas excavaciones de 1m² realizadas sobre lentes de concheros donde se recuperaron principalmente materiales arqueofaunísticos. Como se observa en la Figura 8.1 la diversidad taxonómica general, incluye mamíferos grandes (guanacos y lobos marinos) así como mamíferos pequeños y aves, evidenciando un predominio de los peces en términos de NISP (ver Tabla 8.1 también), a excepción del Sector 1.
El grupo Mammalia 1 representa a las especies mayores (lobos marinos y guanacos), en tanto que el grupo Mammalia 2 se refiere a las especies menores (roedores, cánidos, felinos, entre otros) (Borella y L’Heureux, 2013).

Como se observa en la Tabla 8.1 existen diferencias en la frecuencia de restos de peces entre los loci analizados, variaciones que se expresa también a nivel de densidad de restos por m3. En igual superficie de muestreo, es decir 1m2, se observó que los depósitos correspondientes al Sector 2 son comparativamente más densos que los detectados en el Sector 3. Esta diferencia, es informativa acerca de las propiedades del registro en cada sector, siendo los concheros del Sector 2 los más potentes de la localidad, hasta la fecha.

<table>
<thead>
<tr>
<th>Locus</th>
<th>Pta. Odriozola Sector 2</th>
<th>Pta. Odriozola Sector 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumen excavado</td>
<td>0,4m3</td>
<td>0,3m3</td>
</tr>
<tr>
<td>% Peces</td>
<td>89</td>
<td>33</td>
</tr>
<tr>
<td>NISP Peces</td>
<td>685</td>
<td>402</td>
</tr>
<tr>
<td>Densidad</td>
<td>1217/m3</td>
<td>1340/m3</td>
</tr>
<tr>
<td>% INDET</td>
<td>52,4%</td>
<td>44%</td>
</tr>
<tr>
<td>NISP/NISP</td>
<td>2,05</td>
<td>1,77</td>
</tr>
<tr>
<td>%WMI</td>
<td>70,6</td>
<td>77</td>
</tr>
<tr>
<td>% Alt. Térmica</td>
<td>12,84</td>
<td>4,9</td>
</tr>
<tr>
<td>% Deformación</td>
<td>0,8</td>
<td>3,73</td>
</tr>
</tbody>
</table>

Tabla 8.1. Tabla resumen de las variables contempladas en el análisis contextual y formacional de todos los sondeos excavados en Punta Odriozola.
En términos generales, la muestra ictioarqueológica recuperada en los sondeos presenta un buen estado de preservación, con valores de completitud ósea promedio estimados en 72,05%, siendo una excepción la muestra del Sondeo 1 del Sector 3 que corresponde a un conchero casi completamente deflacionado, lo que tal vez en parte pueda explicar el menor grado de completitud ósea promedio (Tabla 8.1). El porcentaje promedio de restos indeterminados para ambos sectores alcanza el 40% del NISP total, lo que es relativamente común en conjuntos ictiofaunisticos, en donde una buena parte de los huesos presenta bajos o nulos niveles de identificación taxonómica (e.g. espinas y radios). Respecto de las modificaciones culturales, en ningún caso se observaron huellas atribuibles a cortes, aunque si se observaron porcentajes comparativamente altos (respecto de otras localidades del área) de restos con evidencias de alteración térmica (en promedio 19,05), principalmente vértebras. Asimismo se detectó un porcentaje bajo (1,15 en promedio) de restos con evidencias de deformación.

8.2.2 Diversidad taxonómica

Si comparamos la riqueza taxonómica entre los loci, observamos que los dos sondeos del Sector 2 (Sondeo 1 y Sondeo 2) son comparativamente más ricos que los dos sondeos del Sector 3 (Sondeo 1 y Sondeo 2). Esta diferencia no es menor, aunque puede estar siendo afectada por las diferencias en el tamaño de las muestras. Por este motivo se realizó el análisis de rarefacción que establece comparaciones a un mismo n muestral.

<table>
<thead>
<tr>
<th></th>
<th>S2 S1</th>
<th>S2 S2</th>
<th>S3 S1</th>
<th>S3 S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>N taxa</td>
<td>7</td>
<td>8</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>NISP</td>
<td>333</td>
<td>226</td>
<td>12</td>
<td>34</td>
</tr>
<tr>
<td>Dominancia</td>
<td>0.4307</td>
<td>0.1816</td>
<td>0.4306</td>
<td>0.8356</td>
</tr>
</tbody>
</table>

Tabla 8.2. Índice de diversidad de Simpson.

La rarefacción sobre todas las muestras, permitió estimar la cantidad de clases promedio esperada para los cuatro loci analizados (Figura 8.4). La Figura 8.4 incluye dos curvas de rarefacción: una que compara toda la muestra disponible para cada conjunto (a) y otra que compara todos los loci a un mismo n de 12 ejemplares (es decir la muestra más chica) (b).

En la Tabla 8.2 se observan las diferencias en la frecuencia entre los conjuntos analizados y se observa que el sondeo 2 del Sector 2, a pesar de no ser la muestra más numerosa respecto del NISP, es la más rica de la localidad. Por su parte, la Figura 8.4 a muestra que la curva para este conjunto alcanza la asintota en un n=40 especímenes, lo que predice que a partir de este número la riqueza no se verá afectada por más que se incremente el número de especímenes. Esto no sucede en ningún otro conjunto, de hecho se observan curvas de pendientes bajas que no alcanzaran la asintota o lo harán de forma muy gradual. Esto último puede vincularse con muestras más heterogéneas, es decir en donde alguna clase domina sobre el resto y por consecuencia tienen indices de diversidad más altos (Tabla 8.2).
Capítulo 8

En la Figura 8.4 b se comparan todas las muestras a un mismo n=12, en este caso también el Sondeo 2 del Sector 2 es el que presenta la mayor riqueza promedio (5,5 clases). Además se observa que pese a las variaciones en la frecuencia, las curvas del Sondeo 1 (S2), Sondeo 1 y 2 (S3), presentan una morfología relativamente uniforme. Se destaca el caso del sondeo 1 (S3) y el sondeo 1 (S2) con curvas que no sólo comparten la morfología sino que además presentan valores de riqueza promedio muy similares (2,6 clases en promedio). Finalmente, el conjunto menos diverso de la localidad es el Sondeo 2 del Sector 3, con valores de riqueza promedio muy bajos (1,7 clases).

Como surge de la Figura 8.5, la diversidad registrada en la localidad alcanza 12 especies icticas. Sin embargo, también se observa que sólo unas pocas especies son las predominantes en los conjuntos, tanto por su recurrencia como por su frecuencia. Se destaca A. patachonicus como la única que aparece representada en todos los conjuntos del área, constituyéndose esta en la especie dominante de estos conjuntos, con un MNI total estimado en 12 individuos para todos los sondeos sobre un total de 35 (ver también Tabla 8.3), mientras que B. argentinus, Odontesthes sp., Paralichthys sp. y T. argentina tienen un aporte relativo y el resto de las especies se encuentran en proporciones muy bajas en todos los conjuntos (Figura 8.5). De igual forma que lo observado en otras localidades, el conjunto de especies recuperadas en esta localidad corresponden al ensamble de peces de los arrecifes costeros patagónicos (Irigoyen y Galván, 2010). A pesar de su baja frecuencia (Tabla 8.3), el conjunto correspondiente al Sondeo 1 del Sector 3, presenta una composición específica algo diferente al resto de los conjuntos. Si bien predomina A. patachonicus como en los otros loci de la localidad, se observan porcentajes relativamente altos de especies que no son típicas de los arrecifes, por ejemplo el cazón (Galeorhinus galus) y el pejerrey (Odontesthes sp.), lo que tal vez pueda vincularse con actividades de pesca en ambientes diferentes o mediante artes de pesca distintas. Sin embargo, no descartamos problemas de preservación diferencial en este conjunto en particular, ya que como fue mencionado anteriormente corresponde a un conchero parcialmente erosionado.
Figura 8.5. Variaciones porcentuales de los diferentes taxones representados en los sondeos de Pta. Odriozola.

Tabla 8.3. Diversidad taxonómica para los sondeos excavados en Pta. Odriozola. Número de especímenes identificados (NISP) con su valor porcentual y número mínimo de individuos (MNI) con su valor porcentual.

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Sector 2- Sond 1</th>
<th>Sector 2- Sond 2</th>
<th>Sector 3- Sond 1</th>
<th>Sector 3- Sond 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NISP</td>
<td>NISP %</td>
<td>MNI</td>
<td>MNI %</td>
</tr>
<tr>
<td>A. patocharis</td>
<td>189</td>
<td>20.29</td>
<td>7</td>
<td>41.75</td>
</tr>
<tr>
<td>B. argentinus</td>
<td>108</td>
<td>24.52</td>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>E. maclovinus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Galeorhinus guatus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M. furnieri</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Odontocetes sp.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Paralichthys sp.</td>
<td>4</td>
<td>0.58</td>
<td>1</td>
<td>6.25</td>
</tr>
<tr>
<td>Potamotrygon sp.</td>
<td>4</td>
<td>0.58</td>
<td>1</td>
<td>6.25</td>
</tr>
<tr>
<td>P. brasiliensis</td>
<td>3</td>
<td>0.32</td>
<td>1</td>
<td>6.25</td>
</tr>
<tr>
<td>P. porosissimus</td>
<td>13</td>
<td>1.89</td>
<td>1</td>
<td>6.25</td>
</tr>
<tr>
<td>Sebastes aculeus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Serranidae</td>
<td>2</td>
<td>0.29</td>
<td>1</td>
<td>6.25</td>
</tr>
<tr>
<td>T. argentina</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>INDET.</td>
<td>333</td>
<td>48.61</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTALES</td>
<td>685</td>
<td>100</td>
<td>16</td>
<td>100</td>
</tr>
</tbody>
</table>
8.2.3 Representación anatómica

La evaluación en torno a los perfiles anatómicos se centrará en las tres especies más frecuentes de la localidad: *A. patachonicus*, *B. argentinus* y *Odontesthes* sp.; mientras que los datos correspondientes a las demás especies pueden ser consultados en el apéndice (Tablas A.19 a A.22).

Al analizar las representaciones de partes de *A. patachonicus* hay que considerar las diferencias en el tamaño de las muestras (ver Tabla 8.3). En este sentido, como se observa en la Figura 8.6, los perfiles anatómicos de la especie para SE 2 S2, SE 3 S1 y SE 3 S2 no presentan diferencias. En los tres casos se registra el predominio de elementos axiales (vétebras principalmente), seguido por partes correspondientes al cráneo, mientras que el esqueleto apendicular se encuentra ausente en todos los casos. El conjunto restante, SE 2 S1, es el que presenta mayor frecuencia de restos de la especie. En este se observan variaciones respecto del resto de los loci, ya que predomina el esqueleto craneal, seguido por elementos apendicales y comparativamente el segmento axial se encuentra sobrerrepresentado. Este patrón no fue observado en ningún otro conjunto analizado (incluyendo los correspondientes a otras localidades), por lo que será discutido posteriormente.

![Figura 8.6. Porcentaje del número mínimo de elementos de *A. patachonicus* para los sondeos de Pta. Odriozola.](image)

Como se observa en las Figuras 8.7 y 8.8 las dos especies restantes no presentan variaciones de importancia en relación a sus perfiles anatómicos. En el caso de *B. argentinus* se observa una distribución relativamente homogénea entre los dos conjuntos analizados. En ambos casos el segmento axial fue el predominante, seguido por elementos craneales (con porcentajes del 22% en promedio) y finalmente el esqueleto apendicular que presenta porcentajes relativamente altos en comparación (entre 21% y 15%).
Respecto de *Odontesthes* sp. los dos conjuntos en los que esta especie fue registrada muestran tendencias similares respecto de la representación anatómica. Como sucede en gran parte de los conjuntos analizados con *Odontesthes* sp. el segmento axial suele ser el predominante. En este caso en particular sólo se observan porcentajes bajos correspondientes al esqueleto craneal, en SE 2 Sondéo 2. El resto de la muestra corresponde únicamente a elementos axiales.

En síntesis entonces, las tendencias en la representación relativa de partes por especie no presentan variaciones de importancia. Las partes anatómicas arrojan diferencias relativas en su representación, pero varían de forma uniforme entre los distintos *loci*. Estas tendencias también son observadas en las especies minoritarias a partir del MAU% (ver Tabla A.19 a A.22 del Apéndice). En este sentido consideramos que en principio no parecerían existir diferencias en los conjuntos comparados en cuanto a factores como el descarte y el procesamiento diferencial.
8.3 El registro pesquero recuperado en superficie en Arroyo Verde 1

8.3.1 Restos óseos y otolitos

Se trata de un único muestreo superficial realizado sobre el talud de un conchero expuesto y seccionado por la erosión. Se planteó una recolección que abarcara la dispersión de huesos en superficie de 6 x 15 m. (90m²). En total la muestra recolectada asciende a 488 restos de peces (5,42/m²) que generan un MNI estimado en 29 individuos, algunos de ellos con grandes tamaños. Pese a la exposición de los huesos, cerca del 55% de la muestra pudo ser identificada a nivel taxonómico. Se identificaron al menos 10 taxa diferentes siendo A. patachonicus la especie dominante del conjunto con 210 especímenes identificados (43%) y un MNI estimado en 12 individuos. Esto último se corresponde con las observaciones realizadas por la Dra. Gómez Otero (2007), quien informó la presencia de al menos 22 ejemplares de esta especie y único individuo de P. brasiliensis.

<table>
<thead>
<tr>
<th>Localidad</th>
<th>Locus</th>
<th>Latitud</th>
<th>Longitud</th>
<th>Tamaño</th>
<th>N</th>
<th>MNI</th>
<th>Dens. /m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arroyo Verde</td>
<td>AV 1</td>
<td>-41.9001</td>
<td>-65.06422778</td>
<td>90m²</td>
<td>488</td>
<td>29</td>
<td>5,42</td>
</tr>
</tbody>
</table>

Tabla 8.4. Localización, frecuencia, Número Mínimo de Individuos y densidad (/m²) de los restos ictioarqueológicos recolectados en superficie en Arroyo Verde

El estado general de la muestra es bueno a pesar de haber sido recuperada en superficie. De hecho, únicamente se observaron 22 restos con evidencias de pérdida de color (suavemente blanqueados por calcinación solar), con lo que es posible sostener que la exposición de los materiales había sido relativamente reciente. Se identificaron además 6 especímenes con evidencia de quemado (3 vértebras INDET y tres elementos craneales de A. patachonicus) y no se observaron especímenes con evidencias de deformación ni huellas atribuibles a cortes. En promedio el índice de completitud ósea muestra valores relativamente altos (76,2%) y semejante para todos los taxa (Tabla 8.5), es decir un patrón similar al observado en los conjuntos recuperados en sondeos (Tabla 8.1).
Tabla 8.5. Diversidad taxonómica del conjunto superficial Arroyo Verde 1. Número de Especímenes Identificados por taxón (NISP) y su valor porcentual, Número Mínimo de Individuos (MNI) e índice de completitud ósea (WMI) por especie.

<table>
<thead>
<tr>
<th>Taxa</th>
<th>NISP</th>
<th>NISP%</th>
<th>MNI</th>
<th>WMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. patachonicus</td>
<td>210</td>
<td>43,03</td>
<td>12</td>
<td>73,39</td>
</tr>
<tr>
<td>B. argentinus</td>
<td>19</td>
<td>3,9</td>
<td>3</td>
<td>73,67</td>
</tr>
<tr>
<td>D. argenteus</td>
<td>4</td>
<td>0,8</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>E. maclovinus</td>
<td>1</td>
<td>0,2</td>
<td>1</td>
<td>80</td>
</tr>
<tr>
<td>Galeorhinus galus</td>
<td>1</td>
<td>0,2</td>
<td>1</td>
<td>70</td>
</tr>
<tr>
<td>M. furnieri</td>
<td>17</td>
<td>3,4</td>
<td>5</td>
<td>72,5</td>
</tr>
<tr>
<td>Odontesthes sp.</td>
<td>1</td>
<td>0,2</td>
<td>1</td>
<td>80</td>
</tr>
<tr>
<td>Paralichthys sp.</td>
<td>2</td>
<td>0,4</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>P. brasiliensis</td>
<td>6</td>
<td>1,2</td>
<td>2</td>
<td>70</td>
</tr>
<tr>
<td>T. argentina</td>
<td>6</td>
<td>1,2</td>
<td>2</td>
<td>82,5</td>
</tr>
<tr>
<td>INDET.</td>
<td>221</td>
<td>42,28</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTALES</td>
<td>488</td>
<td>100</td>
<td>29</td>
<td>76,2</td>
</tr>
</tbody>
</table>

8.3.1.a Análisis de tallas sobre otolitos

Dentro del conjunto de restos recolectados en el muestreo de AV 1 se registraron cuatro otolitos de *M. furnieri* que nos permitieron realizar un análisis de estimación de tallas. Como sucede en el resto de los conjuntos analizados la totalidad presenta tallas adultas (Figura 8.9), lo que implica algún grado de selección en la disponibilidad de ejemplares y/o en la captura. La media de la talla es de 606,6 mm con un desvío estándar de 93,8 mm.

Figura 8.9. *Box-plot* de las tallas estimadas (mm) a partir de los otolitos de *M. furnieri* recuperados en AV 1.
8.3.2 Pesas líticas

En este capítulo se presentan los datos correspondientes al análisis de las pesas líticas para ambas localidades debido a que se trata de una pequeña muestra (n=27), en la que la mayoría de los artefactos provienen de Punta Odriozola (Tabla 8.6).

<table>
<thead>
<tr>
<th>Sector</th>
<th>Muestreo</th>
<th>Latitud</th>
<th>Longitud</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO</td>
<td>Sector 3</td>
<td>-41.83026389</td>
<td>-65.03750833</td>
<td>25</td>
</tr>
<tr>
<td>AV</td>
<td>AV 1</td>
<td>-41.9001</td>
<td>-65.06422778</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>27</td>
</tr>
</tbody>
</table>

Tabla 8.6. Localización y frecuencia de pesas líticas en las dos localidades analizadas de la costa oeste.

Como en el resto de las localidades estudiadas, las pesas líticas recuperadas en este tramo costero corresponden a guijarros de playa levemente modificados con escotaduras laterales. La técnica de modificación predominante es la percusión unifacial que representa el 55% (n=15). La muestra se completa con el 45% restante (n=13) correspondiente a la percusión y piqueteado unifacial en PO. Sobre el eje longitudinal de la pieza es donde se registró la mayoría de modificaciones (63%, n=17), mientras que en el 33,3% (n=9) se registraron sobre el eje longitudinal de la pieza y un caso (3,7%) presentó modificaciones en ambos ejes del artefacto.

Finalmente, las materias primas representadas corresponden a rocas locales de disponibilidad inmediata (principalmente correspondientes al manto tehuelche –ver Alberti 2010). La muestra está dominada completamente por rocas volcanitas ácidas, que representan el 100% de las materias primas utilizadas.

8.3.2.a Análisis métricos

A partir del largo, ancho, espesor se calcularon dos índices que pudieran describir de una forma simple algunos aspectos de la forma de estos artefactos. Para estimar si las piezas presentan formas redondeadas o tabulares, se calculó el índice ancho/largo (ver Capítulo IV). En este sentido se observa que gran parte de las pesas recuperadas en estas dos localidades presentan formas tendientes a la redondez (es decir valores cercanos a 1). Esta es una tendencia que se repite en todos los conjuntos analizados hasta el momento en la costa rionegrina. La distribución de valores observada en la Figura 8.10 muestra tres concentraciones de frecuencias que pueden diferenciarse. Un grupo mayoritario de estos artefactos arrojan valores en torno a 0,78, es decir formas relativamente equilibradas en la relación ancho/largo. Un conjunto pequeño de pesas presentan morfologías relativamente más alargadas (hacia la izquierda de la distribución), con valores promedio en torno a 0,65. Y finalmente un conjunto de pesas más redondeadas o simétricas en su plano frontal, presentan valores en promedio de 0,85.
Para estimar si la pieza presenta una sección plana o más bien esférica se calculó el índice de robustez (ver Capítulo IV). Como sugiere la Figura 8.11, la mayor parte de las pesas líticas recuperadas en estas localidades, se concentran en los valores cercanos a 0, es decir presentan una sección más bien chata o aplanada. De igual forma que lo observado para el índice ancho/largo el histograma de frecuencias (Figura 8.11) sugiere tres agrupaciones de valores. El grupo mayoritario presenta valores medios que se distribuyen entre 0,17 y 0,23 con una media de 0,20. En ambos extremos de la distribución, es decir hacia la izquierda y derecha del gráfico, se observan dos pequeñas concentraciones de valores. La que se ubica a la izquierda presenta los valores más bajos, es decir las formas más aplanadas y delgadas del conjunto, con un media de 0,14. Por su parte el agrupamiento derecho, constituye aquellas piezas más espesas (aunque todavía de sección plana) con valores promedios en torno a 0,24.

Finalmente en lo que se refiere al peso, los análisis sugieren una concentración de frecuencias entre 80 y 170 gramos, con una media de 133 g.
Como se observa en la Figura 8.12, llama la atención un pequeño grupo de piezas (n=2) con pesos comparativamente bajos respecto del resto de la muestra. Estas dos piezas presentan en promedio pesos cercanos a los 40 g. Es decir, tres veces menores a la media del conjunto. Asimismo hacia la derecha de la concentración principal se observa un único artefacto de 290 gramos, es decir, muy por encima del valor medio del conjunto (Tabla 8.7).

![Histograma de frecuencias para el peso (g) de las pesas líticas recolectadas en Pta. Odriozola y Arroyo Verde.](image)

Tabla 8.7. Estadística descriptiva de las variables métricas analizadas.

<table>
<thead>
<tr>
<th>Variable</th>
<th>A/L</th>
<th>ROBU</th>
<th>Peso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frecuencia</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>Mínimo</td>
<td>0.65</td>
<td>0.13</td>
<td>38</td>
</tr>
<tr>
<td>Máximo</td>
<td>0.88</td>
<td>0.26</td>
<td>298</td>
</tr>
<tr>
<td>Media</td>
<td>0.77</td>
<td>0.19</td>
<td>133,18</td>
</tr>
<tr>
<td>Varianza</td>
<td>0.004</td>
<td>0.001</td>
<td>3153,08</td>
</tr>
<tr>
<td>Desv. Est.</td>
<td>0.06</td>
<td>0.03</td>
<td>56,15</td>
</tr>
</tbody>
</table>

8.4 Principales tendencias y comparaciones entre sectores

Manteniendo la misma estructura que en los capítulos previos en este acápite se describen y discuten brevemente algunas consideraciones acerca del registro pesquero en los distintos sectores de muestreo. Como en este caso se incluyen materiales provenientes de dos localidades arqueológicas y para mantener una estructura comparativa análoga, los datos de la localidad Arroyo Verde serán incorporados en las comparaciones como un solo sector representando a toda una localidad, por lo que los resultados deben ser considerados exploratorios hasta que se incorporen nuevas muestras al análisis.
Los tres sectores que analizaremos entonces son: el Sector 2 y el Sector 3 de Punta Odriozola y el Sector 1 de Arroyo Verde. A nivel general estos tres sectores pueden ser categorizados en dos unidades ambientales diferentes. El Sector 2 de Punta Odriozola y el Sector 1 de Arroyo Verde se presentan como dos contextos más o menos homogéneos, es decir concheros ubicados en mantos de dunas que en promedio se localizan a 100 m de la línea de costa actual y presentan un altura promedio de entre 4 y 8 m sobre el nivel marino. En cambio el Sector 3 de Punta Odriozola corresponde a una antigua terraza en una cota más elevada de aproximadamente 30 metros, en donde se registraron unas pocas acumulaciones de concheros muy deflacionados y una gran cantidad de material lítico superficial, entre ellos las pesas. De esta forma podremos evaluar en qué medida las variaciones geográficas, ambientales y arqueológicas condicionaron las actividades pesqueras en el pasado.

8.4.1 Tendencias en el registro ictioarqueológico

El primer aspecto analizado tiene que ver con la procedencia de la muestra en los tres sectores. Como se observa en la Tabla 8.8 en Arroyo Verde la muestra corresponde a una recolección superficial, por lo tanto, la generación de esta muestra es diferente de la obtenida en los dos sectores de Pta. Odriozola. Sin embargo, como ya fue mencionado anteriormente en Arroyo Verde se realizaron muestreos subsuperficiales que arrojaron evidencia ictioarqueológica, que por cuestiones de tiempo no fueron incluidos en este análisis.

Otro punto a considerar es que la mayor parte del registro ictioarqueológico recolectado en superficie a nivel regional, corresponde a otolitos de corvina rubia (ver Capítulos 5, 6, 7). La baja frecuencia de este registro en las localidades de la costa oeste puede estar influenciada por cuestiones vinculadas al área de dispersión de la especie en la actualidad y en el pasado (ver Scartascini y Volpedo, 2013).

| Tabla 8.8. Principales variables analizadas en la comparación del registro ictioarqueológico por sectores. |
|---|---|---|
| Sondeos | Pta. Odriozola Sector 2 | Pta. Odriozola Sector 3 | Arroyo Verde Sector 1 |
| N loc | 2 | 2 | 0 |
| NSP | 108 | 58 | 0 |
| MIN | 27 | 8 | 0 |
| NSP/m² | 1277 | 190/m² | 0 |
| WMI | 73,8% | 70,3% | 0 |
| NSP/NSP | 1,9 | 1,3 | 0 |
| N tomo | 11 | 5 | 0 |
| Dominancia | 0,50 | 0,63 | 0,6 |

<table>
<thead>
<tr>
<th>Superficie</th>
<th>Pta. Odriozola Sector 2</th>
<th>Pta. Odriozola Sector 3</th>
<th>Arroyo Verde Sector 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>N loc</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>NSP</td>
<td>0</td>
<td>0</td>
<td>488</td>
</tr>
<tr>
<td>MIN</td>
<td>0</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>NSP/m²</td>
<td>0</td>
<td>0</td>
<td>5,4/m²</td>
</tr>
<tr>
<td>N tomo</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Tabla Media</td>
<td>0</td>
<td>0</td>
<td>606,3</td>
</tr>
</tbody>
</table>
Pese a que la evidencia recuperada en sondeos se restringe únicamente a los \textit{loci} de Pta. Odriozola, las características y estado preservación de la muestra superficial de AV permite incluir todos los conjuntos dentro de un mismo análisis.

Las comparaciones en términos de NISP y MNI entre los \textit{loci} muestran diferencias de importancia, siendo la muestra de Pta. Odriozola Sector 2 la más numerosa, aunque el MNI de AV es comparativamente mayor en relación con la frecuencia total. La muestra más pobre a nivel frecuencia es la correspondiente al Sector 3 de Punta Odriozola.

El estado de preservación de las muestras en general es bueno, incluso el observado AV (la muestra de superficie), con porcentajes de completitud ósea (WMI) altos, en torno al 73%. El elevado número de restos indeterminados, se corresponde con los valores comúnmente observados en los conjuntos ictioarqueológicos del área (Scartascini, 2012) y los documentados en otras regiones de Patagonia (Torres, 2007; Zangrando, 2009).

Siguiendo la metodología propuesta para el resto de las localidades, se realizó el análisis de rarefacción para estimar la riqueza de especies estimadas a igual frecuencia.

Como se observa en la Figura 8.13, el sector más rico es el Sector 2 de Pta. Odriozola. Sin embargo, como sugiere la curva a partir de un n de 70 especímenes esta muestra alcanza la asintota, lo que predice que en el caso en que nuevas muestras sean incorporadas no serían esperables cambios importantes en la riqueza del conjunto. Por su parte las curvas de AV y Pta. Odriozola Sector 3 presentan pendiente y morfologías similares (a pesar de las diferencias en los tamaños de las muestras) lo que produce valores de riqueza similares a un mismo n. En este sentido, para una muestra de 58 especímenes, es decir el conjunto más pequeño, el análisis de rarefacción muestra que ambos sectores presentarían una riqueza estimada en 5,7 clases. Estas similitudes también se observan en relación con la estructura de la distribución, es decir la forma en la que se distribuyen las especies dentro de cada sector. El índice de dominancia estimado para AV y Pta. Odriozola Sector 3 no presenta diferencias de importancia (Tabla 8.8) y son comparativamente altos respecto de la estimación realizada para Pta. Odriozola Sector 2.
En resumen, los análisis entre sectores sugieren que más allá de la frecuencia de restos (respecto del NISP y MNI), no se observan diferencias sustanciales entre los conjuntos pesqueros que puedan ser vinculadas a las características microambientales de cada sector.

8.4.2 Tendencias en las pesas líticas

Como ya había sido mencionado anteriormente, las pesas líticas fueron registradas en ambas localidades de la costa oeste, aunque en frecuencias diferentes (Tabla 8.6). Las comparaciones de estos artefactos en ambos sectores costeros (PO y AV1) no muestran diferencias destacables a nivel tecnológico ni métrico.

En primera instancia, como ya fue comentado previamente, el 100% de las materias primas utilizadas corresponden a vulcanitas ácidas en ambos sectores. Asimismo, como se observa en la Figura 8.14 no se registraron variaciones entre sectores respecto del tipo y eje de modificación. En ambos casos se observan dos técnicas principales de manufactura (percusión/percusión y piqueteado) que se encuentran representadas de forma homogénea. Respecto del eje de modificación tampoco se observan diferencias marcadas entre las muestras, ya que en ambos casos predominan las modificaciones en el eje longitudinal.

Finalmente, respecto de las variables métricas, los análisis sugieren que las pesas recuperadas en ambos sectores presentan morfologías similares.Sin embargo se observó que los artefactos recuperados en Arroyo Verde son comparati-
vamente mayores a las de Pta. Odriozola. Estas variaciones de tamaño se mani-
fiestan en el peso (aspecto que no estaría influenciado por el tipo de materia prima
ya que en ambos casos se trata de rocas similares, es decir con el mismo peso es-
pecífico) y en la robustez (Tabla 8.9.) No obstante, existen diferencias de impor-
tancia en los tamaños de ambas muestras, por lo que estos patrones deben ser
evaluados cuando se disponga de mayor cantidad de pesas en Arroyo Verde.

<table>
<thead>
<tr>
<th>Tabla 8.9. Valores medios de las variables métricas analizadas en las pesas líticas por sector.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso</td>
</tr>
<tr>
<td>Peso (grs)</td>
</tr>
<tr>
<td>L / A</td>
</tr>
<tr>
<td>R / O</td>
</tr>
</tbody>
</table>

8.5 Breve síntesis

En este capítulo presentamos la evidencia pesquera correspondiente a dos lo-
calidades arqueológicas ubicadas en la costa oeste del GSM. Como se desprende
de los análisis, los peces se presentan como una categoría dominante en casi to-
dos los conjuntos analizados (Figura 8.3). La diversidad ictioarqueológica alcanza
los 13 taxa, un número comparativamente alto respecto del observado en otros
sectores de la costa rionegrina (ver Capítulos 5, 6 y 7). Sin embargo, como ya fue-
ra analizado previamente, sólo un grupo pequeño de especies se presentan de
forma abundante. En los conjuntos de ambas localidades predomina *A. pata-
chonicus* y se encuentran relativamente bien representados *B. argentinus*, *Odo-
testhes* sp. y *Paralichthys* sp., el resto de las especies se presentan en porcentajes
bajos en todos los casos (ver Figura 8.5 y Tabla 8.5). Como en el resto de las loca-
lidades analizadas, en Pta. Odriozola y Arroyo Verde 1 parecería existir un patrón
en la pesca vinculado a ciertos espacios litorales. Por su composición y estructura
los conjuntos ictioarqueológicos representan casi taxativamente al ensamble de
peces de los arrecifes (Irigoyen y Galván, 2010). No obstante, como en el resto de
las localidades, existen ciertos loci, que se destacan por presentar perfiles de pre-
sas vinculados a otros sectores litorales, por ejemplo, el caso del Sondeo 1, en el
Sector 3 de Punta Odriozola, que incluye especies de fondos blandos.

El registro pesquero superficial detectado en estas localidades (con excepción
de Arroyo Verde 1), se restringe únicamente a las pesas líticas. Este tipo de arte-
factos ha sido bien documentado en Punta Odriozola y loci cercanos (ver Tabla A.2
del Apéndice) y recuperado en bajo número en Arroyo Verde 1. Por otra parte, la
casi total ausencia de otolitos de *M. furnieri* en los conjuntos puede estar vincula-
da con el área de distribución del recurso (Scartascini y Volpedo, 2013).

A modo de síntesis general, el conjunto de datos analizados en este capítulo
sugiere la explotación sistemática de peces en ambas localidades estudiadas. Esto
ya había sido observado por Gómez Otero 2007 para el caso de Arroyo Verde. Esta
investigadora había reconocido al menos dos especies que se incluyen entre las
diez identificadas en este trabajo. Sin embargo, tanto en la muestra obtenida por Gómez Otero como en la aquí analizada, *A. patachonicus* es la principal especie representada. Por otra parte, la evidencia recuperada y analizada en Punta Odríozola profundiza y complejiza la diversidad ictiofaunística y ambiental de la pesca en este tramo costero.
Sección III
DISCUSIONES.
PARTE 1: TENDENCIAS ESPACIALES

9.1 Introducción

El propósito de este capítulo es discutir las variaciones en la distribución espacial del registro pesquero a lo largo de la costa rionegrina del GSM. Se plantea la integración de los datos en dos escalas. Una escala macro-regional en la que se evalúan las diferencias y similitudes en vinculación con las variaciones ambientales, latitudinales y arqueológicas entre la Costa Norte y Costa Oeste del GSM. Por otra parte, una escala micro-regional en la cual se evalúa cómo las diferencias microambientales pueden afectar o no la práctica y los productos de la pesca en el pasado. De esta forma se abordará el conjunto de objetivos que tienen como eje la dimensión espacial (Capítulos 3 y 4).

9.2 Variabilidad del registro pesquero en escala regional (Costa Norte/Oeste)

Como ya fue observado previamente (Capítulos 2 y 3) existen diferencias ambientales, contextuales y arqueológicas entre la Costa Norte y Oeste del GSM (Borella et al., 2006, Favier et al., 2008, Favier et al., 2009, Manzi et al., 2011, entre otros). En este sentido, mientras que el sector norte de dicho golfo fue caracterizado como un espacio intensamente y redundantemente ocupado, el oeste en cambio presenta una señal arqueológica más tenue y menos diversa por lo que ha sido considerada como un corredor o espacio de circulación (Borella et al., 2006, Favier Dubois y Borella, 2011). Este esquema de uso diferencial del espacio costero nos permite evaluar las variaciones en el registro pesquero en una gran escala, vinculando aspectos ambientales, latitudinales y conductuales (en términos de uso del espacio). A continuación se repasan las principales tendencias para los conjuntos recuperados en sondeos y para los provenientes de superficie.

9.2.1 Tendencias en el registro pesquero recuperado en sondeos

Como ya fue observado en los resultados, la distribución del registro pesquero a lo largo de la costa rionegrina es heterogénea en cuanto a la frecuencia y a la distribución de restos. La muestra de la costa norte es casi 10 veces mayor que la de la costa oeste. Además, los picos máximos de frecuencia se encuentran localizados muy próximos entre las distintas localidades de la costa norte del golfo, con mayor concentración en el área cercana a la Bahía San Antonio (Capítulo 7).

En cuanto a la distribución, en la costa norte los restos ictioarqueológicos provenientes de sondeos se distribuyen a lo largo de casi toda la franja costera, mientras que la costa oeste no parece presentar una distribución tan continua o al menos pareciera ser más acotada, encontrándose circunscripta a ciertos espacios de este tramo litoral (Figura 9.1.a).
Figura 9.1. a) Distribución geográfica del registro ictioarqueológico (NISP) proveniente de sondeos. b) Distribución geográfica del N taxa de peces de los conjuntos recuperados en sondeos.

Los patrones observados respecto de la variación espacial de la riqueza (N taxa) muestran tendencias similares a la frecuencia. Se observa una distribución heterogénea en la que sólo unos pocos puntos del espacio costero arrojan valores altos de riqueza (Figura 9.1b).

Como es esperable, los análisis muestran una correlación significativa (r=0,62; p<0,01) entre la frecuencia y el N taxa para toda la muestra. Esto implica que la muestra más grande (costa norte) es comparativamente más rica que la costa oeste. Sin embargo, existen algunas excepciones a este patrón, por ejemplo el caso de la localidad arqueológica Bahía San Antonio que presenta una riqueza relativamente baja en relación con la frecuencia de restos recuperados.

Al explorar las muestras de la costa norte y de la costa oeste a partir del procedimiento de rarefacción, se observa que en el umbral de 908 especímenes (es decir la muestra más chica -costa oeste-) la riqueza taxonómica es mayor en la costa oeste. La curva correspondiente a la costa norte no alcanza una asintota total pero muestra patrones de crecimiento muy graduales como sucede en las muestras más homogéneas (Figura 9.2). Esto implica que en el caso de la costa norte se requeriría un incremento de su frecuencia de casi el doble para alcanzar el umbral de los 16 taxa y de 6 veces para alcanzar los 18 taxa.

Figura 9.2. Curvas de rarefacción para la costa norte y oeste del GSM.
En resumen, el análisis de rarefacción indica que, a pesar de las diferencias en el tamaño de la muestra de la costa oeste, es comparativamente más diversa en especies icticas que la norte. Asimismo, las curvas predicen que pese a que la asintota no fue lograda en ninguno de los dos casos, en el umbral de los 1000 especímenes las muestras alcanzan gran parte de su riqueza (Figura 9.2).

Al explorar la dominancia de los taxa en los conjuntos de los dos sectores costeros, se determinaron diferencias significativas (p<0,001). La costa norte presenta una distribución más homogénea con valores de dominancia baja (D=0,19), es decir que ningún taxón domina sobre el resto. Por su parte la costa oeste es levemente más heterogénea (D=0,27), lo que implica la preponderancia de una clase por encima de las otras (Tabla 9.1).

<table>
<thead>
<tr>
<th></th>
<th>Costa Norte</th>
<th>Costa Oeste</th>
<th>Bootstrap p(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N taxa</td>
<td>18</td>
<td>16</td>
<td>0,856</td>
</tr>
<tr>
<td>Frecuencia</td>
<td>6380</td>
<td>908</td>
<td>0</td>
</tr>
<tr>
<td>Dominancia</td>
<td>0,1901</td>
<td>0,2731</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabla 9.1. Indices de diversidad para los conjuntos de la costa norte y oeste y el nivel de probabilidad obtenida por remuestreo (Boot p).

Como se observa en la Figura 9.3, algunas especies aparecen representadas en ambas costas, aunque con variaciones destacables en cuanto a sus proporciones. Así *D. argenteus*, *M. furnieri*, *P. porosissimus* y *P. brasilianus* alcanzan sus valores relativos más altos en la costa norte. En cambio, *A. patachonicus*; *B. argentinus*, *Paralichthys* sp. y *T. argentina* predominan comparativamente en la costa oeste del GSM. Con excepción de *M. furnieri*, todas corresponden a especies típicas de los arrecifes patagónicos (ver Capítulo 2) y presentan hábitos costeros al menos durante algún momento del año. Entonces,
la pesca se encontraría vinculada a un tipo de ambiente en particular, los arrecifes costeros, que son ubicuos en el GSM. Esto habría determinado que los peces explotados sean los mismos tanto en la costa norte como en la costa oeste. En tal sentido, las variaciones relativas en la frecuencia de especies ícticas presentes en los dos sectores de costa parecen estar vinculadas a la oferta ambiental o micro ambiental.

9.2.2 Tendencias en el registro pesquero recuperado en superficie

A partir de los datos provenientes del registro superficial se observaron variaciones entre la costa norte y la costa oeste. La principal evidencia de estos contextos son los otolitos, cuya frecuencia (NISP) muestra grandes diferencias entre ambos tramos costeros (n Costa Norte=1858 vs. n Costa Oeste=25). *M. furnieri* es una especie típica del distrito bonaerense que en la actualidad no se encuentra disponible en la mayor parte del GSM. La intensa y sostenida explotación de este recurso en la costa norte y el escaso y discontinuo uso en la oeste responden estrictamente a un factor latitudinal en la paleodistribución de esta especie (Scartascini y Volpedo, 2013). En este sentido, los análisis determinaron una correlación baja significativa ($r= 0.28$, $p<0.05$) entre la latitud y la frecuencia de otolitos de *M. furnieri* (Figura 9.4). Sin embargo los valores de correlación son bajos debido a la propia geografía del GSM que en su tramo norte presenta una orientación este/oeste y no una norte/sur (como se observa en la costa oeste).

![Figura 9.4. Correlación entre el logaritmo de la frecuencia de otolitos de *M. furnieri* y la latitud.](image)

Los análisis de talla a partir de los otolitos de *M. furnieri* en ambos tramos costeros también muestran diferencias significativas ($T= -3.2$, $p<0.05$). Se observa que mientras en la costa norte los otolitos hallados proceden de especímenes cuyo largo total promedio estimado es de 499,4 mm, en la costa oeste la talla estimada de los peces es en promedio más grande (638,5 mm). En el tramo norte se observa
el predominio marcado de ejemplares adultos y algunos ejemplares juveniles (tallas entre 240 y 360 mm). En cambio, en la costa oeste todos los otolitos proceden únicamente de ejemplares adultos de tallas grandes. Estas variaciones en la estructura poblacional de ambas muestras podrían indicar variaciones en la disponibilidad de ejemplares de *M. funieri* en los distintos tramos costero del GSM. Las tallas estimadas son un indicador de la estructura de la población explotada y por lo tanto permiten realizar inferencias sobre la bioecología de estos ejemplares, a partir de los datos de comunidades similares en la actualidad. Para el caso particular de las corvinas, las observaciones actuales mostraron que los ejemplares juveniles siempre se encuentran vinculados a los ambientes *costeros de aguas someras*, mientras que los adultos pueden desarrollar desplazamientos más largos, vinculados a masas de agua de salinidad y temperatura variables (Jaureguizar et al., 2003). Esto entonces podría estar explicando el registro diferente detectado en el GSM para esta especie en particular.

9.2.3 Tendencias en el registro tecnológico

De igual forma que lo observado para el registro ictioarqueológico, la frecuencia de pesas líticas en ambos sectores costeros del GSM presenta marcadas diferencias. En principio, la muestra correspondiente a la costa norte triplica a la colectada en la costa oeste (n=150 y n=50, respectivamente). Ambos conjuntos están conformados por guijarros de playa con una escasa modificación cultural, únicamente representada por escotaduras laterales en las piezas.

En ambas costas las materias primas principalmente utilizadas para confeccionar estos artefactos fueron las rocas volcánicas. Sin embargo, llama la atención la ausencia de las variedades de rocas volcánicas intermedias-básicas en la muestra de la costa oeste (Figura 9.5). Este patrón podría explicarse por la oferta ambiental de rocas a lo largo de la costa rionegrina. Alberti (2014) observó que desde Punta Pórfido (ver Figura 1 Introducción) hacia el sur, las rocas ácidas predominan ampliamente debido a la presencia de la Formación Marfil que provee principalmente riolitas, tobas y granitos. En cambio desde Punta Pórfido hacia el norte predominan las rocas intermedias-básicas por el mayor desarrollo de cordones litorales, que son los que principalmente proveen de este tipo de rocas (Alberti y Cardillo, 2014). Entonces, las materias primas utilizadas en todos los casos corresponden a rocas locales de disponibilidad inmediata.

![Figura 9.5. Porcentaje de materias primas líticas representadas entre las pesas líticas recuperadas en ambas tramos costeros.](image-url)
Las técnicas empleadas en la modificación de los guijarros en ambos tramos costeros son las mismos, con excepción de la abrasión y piqueteado que sólo se encuentra presente en la costa norte del GSM (Figura 9.6). En ambas muestras predomina la percusión para la realización de las escotaduras laterales. El resto de las técnicas se encuentran representadas en proporciones similares en las dos muestras. En lo que se refiere a la presencia de piezas con abrasión y piqueteado en la costa norte, se observó que en todos los casos corresponden a surcos o semisurcos realizados sobre rocas sedimentarias (Ver Tabla A.2 del Apéndice). Estas pequeñas bolas registradas en varias localidades de la costa norte del GSM fueron confeccionados sobre rocas blandas (principalmente carbonáticas). En todos los casos la modificación se realizó sobre el eje transversal, además poseen una media de peso cercana a los 50 g y una morfología tendiente a la esfericidad. Al igual que las pesas realizadas mediante escotadura, se encuentran asociadas a restos de peces y otros restos faunísticos. En trabajos previos se postuló que estos artefactos podrían vincularse con técnicas de pesca más selectiva, como por ejemplo líneas de pesca (Scartascini, 2010 y 2012).

![Figura 9.6. Técnicas de manufactura de pesas líticas en ambos tramos costeros.](image)

Finalmente, se observaron diferencias respecto del eje de modificación en las piezas de ambas muestras. Mientras que la costa norte arroja proporciones similares de artefactos con modificaciones en el eje longitudinal y transversal, aunque con un leve predominio de estos últimos, la costa oeste en cambio muestra el predominio marcado de pesas con modificación en el eje longitudinal (Figura 9.7).

![Figura 9.7. Frecuencia relativa del eje de modificación en las pesas líticas recuperadas en ambos tramos costeros.](image)
En lo que se refiere a las variables métricas los análisis en escala regional muestran que no existen grandes diferencias entre los conjuntos (Figura 9.8). Respecto del peso, se observa que ambas muestras presentan una distribución de valores relativamente homogénea (Figura 9.8.a). En promedio, las pesas de la costa oeste son levemente más pesadas ($\bar{X}= 123.4$ g ± 64.3 g) que las de la costa norte ($\bar{X}= 115.3$ g ± 62.5 g). Sin embargo, estas variaciones son pequeñas y posiblemente se encuentren vinculadas a la oferta desigual de rocas en ambos sectores, por lo que se considera que no representarían diferencias en los sistemas de pesca. Por otra parte, en lo que refiere al índice ancho/largo, es decir a la morfología de la pieza, se observan para las dos costas valores altos (cercanos a 1). Esto implica formas equilibradas en su eje ancho y largo, por lo que presentan un morfología redondeada o cuadrática (Figura 9.8.b). Finalmente, en lo que refiere a la sección de la pieza, es decir la robustez, tampoco se observan variaciones de importancia. En ambas costas predominan las piezas chatas de morfología lenticular. Sin embargo, en la costa norte existe un conjunto de artefactos que presentan índices de robustez más altos, es decir piezas comparativamente más espesas o robustas (Figura 9.8.c).

Figura 9.8. Histogramas de frecuencia para las variables métricas relevadas en las pesas líticas de ambos sectores costeros (Azul= Costa Norte; Rojo= Costa Oeste).
En resumen, los patrones observados en las pesas líticas en escala regional muestran tendencias homogéneas en lo que refiere a la selección de las formas bases para la confección de estos artefactos. Esto puede observarse en los tipos de materias primas utilizadas y en las características métricas (largo, ancho, espesor y peso) de los guijarros seleccionados. Sin embargo, se observaron unas pocas diferencias vinculadas a aspectos de la manufactura de estos artefactos que tal vez puedan ser informativas acerca de técnicas de pesca disímiles a lo largo de la costa rionegrina.

9.3 Variabilidad del registro pesquero en escala microregional

Como se pudo observar en el apartado previo, existe un patrón relativamente homogéneo en la distribución y estructura del registro pesquero en los dos tramos de costa considerados. No obstante, se observaron algunas diferencias en la frecuencia, la representación de especies, las tallas y en la distribución de la evidencia de tecnología pesquera. En este acápite se exploran y discuten esas diferencias en una escala más pequeña a la luz de las variaciones microambientales locales.

9.3.1 Tendencias en el registro pesquero recuperado en sondeos

Como primer punto para explorar las diferencias entre las localidades se plantea una comparación de la diversidad (riqueza y distribución de especies). Además de la marcada variación en la frecuencia de restos (ver Tabla A.1 del Apéndice), los análisis de rarefacción muestran importantes diferencias en la riqueza taxonómica entre las cinco localidades estudiadas. Tomando un n muestral de 267 restos (la muestra más pequeña–que corresponde a AV-) se observa que Bajo de la Quinta (BQ) y Punta Odriozola (PO) son las localidades más ricas, seguidas por Arroyo Verde (AV), Bahía Creek (BC) y por último Bahía San Antonio (BSA) (Figura 9.9). Este último (BSA) se destaca dado que a pesar de presentar la frecuencia de restos más elevada, exhibe la menor riqueza. Las cinco localidades experimentan un crecimiento acelerado en torno a los 300 especímenes y tienden a reducir su crecimiento luego de este número, en el caso de BSA y BQ las curvas alcanzan la asintota, es decir el modelo predice que no aumentará la riqueza pese a que aumente el número de casos (Figura 9.9).

Figura 9.9. Curvas de rarefacción para las cinco localidades estudiadas.
El índice de dominancia de Simpson estimado para las cinco localidades muestra diferencias relativas entre las muestras. Tres localidades (BC, BSA y AV) presentan valores relativamente altos, lo que implica distribuciones heterogéneas con unos pocos *taxa* que dominan sobre el resto. Distinto es el panorama en BQ y PO, las dos localidades más ricas a nivel de *taxa*, en donde los valores bajos indican una distribución más homogénea.

<table>
<thead>
<tr>
<th>Localidad</th>
<th>BC</th>
<th>BQ</th>
<th>BSA</th>
<th>PO</th>
<th>AV</th>
</tr>
</thead>
<tbody>
<tr>
<td>N taxa</td>
<td>11</td>
<td>13</td>
<td>9</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>NISP</td>
<td>958</td>
<td>1121</td>
<td>3023</td>
<td>605</td>
<td>267</td>
</tr>
<tr>
<td>Dominancia</td>
<td>0,4642</td>
<td>0,2059</td>
<td>0,5038</td>
<td>0,2248</td>
<td>0,6291</td>
</tr>
</tbody>
</table>

Tabla 9.2. Índices de diversidad de Simpson para las cinco localidades.

Entonces, los datos indican que BSA es la localidad menos rica y más heterogénea de toda la costa rionegrina, mientras que BQ y PO son las localidades con mayor riqueza y menor heterogeneidad (Tabla 9.2). En un punto intermedio se encuentran BC y AV, aunque con valores de dominancia similares a BSA.

A la luz de estos análisis, cabe destacar el patrón observado en las localidades BC, BSA y AV, en las que más allá del tamaño de la muestra se observan valores de dominancia relativamente altos, lo que implica el predominio de un taxón por sobre el resto. Al explorar estas tendencias a partir de los *taxa* representados, observamos el predominio de una especie por sobre las demás (Figura 9.10). En el caso de BC predomina la lucerna (*Porichthys porosissimus*), es decir una especie que en la actualidad presenta un patrón de mortalidad masiva luego de los meses de verano y por lo tanto es muy fácil recolectarla desde la playa cuando se retira la marea (ver características de esta especie en el Capítulo 2). Si este patrón ecológico se hubiese mantenido durante el Holoceno, entonces podríamos proponer el uso de esta localidad durante los meses estivales.

En BSA los análisis muestran el dominio absoluto de sargo (*Diplodus argenteus*) (Figura 9.10), también una especie típica de los arrecifes costeros patagónicos, aunque puede ser observada en ambientes de fondos blandos. En la actualidad durante los meses de septiembre y diciembre, es decir en la fase reproductiva, es muy frecuente observarlos en grandes cardúmenes en los canales de marea que definan la Bahía San Antonio. Durante el resto del año sólo se observan agregaciones de juveniles en los arrecifes costeros, mientras que los adultos suelen presentar hábitos más solitarios.

Finalmente, respecto del caso de AV, (ver Capítulo 8). En este caso se observó el predominio de *Acanthistius patachonicus* (Figura 9.10), o mero patagónico, una especie típica de los arrecifes patagónicos que puede alcanzar hasta 65 cm de talla. Esto es congruente con lo informado por Gómez Otero (2007), ya que Zangrando (comunicación personal) determinó la presencia de al menos 22 ejemplares de esta especie y un único turco (*Pinguipes brasiliianis*) en la recolección de superficie realizada por la investigadora en esta localidad. El mero presenta su máxima abundancia en los arrecifes patagónicos durante los meses de otoño, aunque se encuentra presente durante todo el año (Irigoyen y Galvan, 2010).
Esta representación diferencial de especies no implica diferencias de clase ya que todas las especies (o la mayoría de ellas) fueron registradas en todas las localidades. Las diferencias aquí detectadas son de grado ya que implican variaciones en la representación de las mismas especies a lo largo de la costa. Tres de las cinco localidades estudiadas en la costa rionegrina presentan un patrón de explotación íctico orientado a ciertas especies puntuales; ante este escenario nos preguntamos: ¿esta representación desigual responde a factores de oferta ambiental o implica la selección y aprovechamiento de ciertas especies “favoritas”? Los datos que surgen de esta investigación aún son insuficientes para obtener una respuesta certera a este interrogante. Incluso resultaría difícil determinar si una especie puede ser favorita o no ya que esto depende de múltiples factores. No obstante, al menos desde el punto de vista económico, los análisis ictioarqueológicos realizados muestran que tanto las especies de alto rendimiento energético (por ejemplo *Acanthistius patachonicus*), como las especies más pequeñas y de menor disponibilidad de carne (por ejemplo *Porichthys porosissimus*) fueron intensamente explotadas. Esto sugeriría que más allá de que pudieron haber existido especies favoritas, la disponibilidad y oferta ambiental parece haber sido un factor de gran importancia.
9.3.2 Tendencias en el registro pesquero recuperado en superficie

9.3.2.a Los otolitos de *M. furnieri*

Aquí nos enfocamos específicamente en el caso de los otolitos de corvina rubia (*M. furnieri*), principal registro ictoarqueológico superficial en la costa rionegrina. Previamente observamos que su distribución a lo largo del litoral del GSM respondería a un patrón latitudinal vinculado con la propia distribución del recurso en el pasado. Sin embargo, como también observamos, la distribución y abundancia de este registro parece haber variado en vinculación con aspectos microambientales que afectaron no sólo la oferta del recurso sino también la posibilidad de explotarlos en gran número.

En primera instancia se observa que, más allá de la distribución latitudinal de los otolitos de *M. furnieri*, los análisis sugieren que la mayor concentración (respecto de la frecuencia) se da en determinados puntos del espacio costero y no en todos los loci muestreados. Esto sucede incluso en la costa norte en donde potencialmente la disponibilidad del recurso fue relativamente homogénea. Entonces existe la posibilidad de que determinados sectores de la costa norte del GSM hayan reunido una serie de características ambientales que permitieron la disponibilidad masiva del recurso y por lo tanto la posibilidad de obtenerlos en grandes cantidades. Las localidades Bahía Creek, Bajo de la Quinta y Bahía San Antonio presentan las frecuencias más altas de otolitos, que en total suman 970 otolitos (algo más del 50% de la muestra total).

Más allá de las variaciones en la frecuencia absoluta de otolitos por localidades, se observa una relativa homogeneidad en la densidad de otolitos por m2 para las muestras de la costa norte. BC, BQ y SAO presentan valores entre 1,2 y 1,6 de otolitos por m2 (Figura 9.11), lo que implica una diferencia clara con las dos localidades de la costa oeste. No se detectaron otolitos de *M. furnieri* en conjuntos de superficie de PO mientras que en AV sólo se recolectaron en muy baja densidad (0,04 otolitos/ m2).

![Figura 9.11. Densidad de otolitos por m2 en las diferentes localidades de la costa rionegrina.](image)

También se observaron variaciones en relación con las tallas estimadas, aunque sólo son significativas aquellas variaciones entre AV y el resto de las localidades (ANOVA=55,2 p<0,001; Figura 9.12). BC presenta en promedio las tallas más chicas, aunque se registró mucha varianza interna en la muestra. Este es un patrón que se repite en las tres localidades de la costa norte, es decir mucha
variación interna (Tabla 9.3), lo que tal vez podría vincularse con técnicas de pesca masiva de ejemplares juveniles grandes y adultos. En cambio, el patrón observado en AV respondería más a una técnica selectiva, enfocada en ejemplares adultos de tallas grandes.

![Box plot de las tallas estimadas (mm) de *M. furnieri*](image)

Figura 9.12. *Box plot* de las tallas estimadas (mm) de *M. furnieri*. La línea de puntos indica el límite entre tallas juveniles y adultas.

<table>
<thead>
<tr>
<th></th>
<th>BC</th>
<th>BQ</th>
<th>BSA</th>
<th>AV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frecuencia</td>
<td>158,0</td>
<td>455,0</td>
<td>303,0</td>
<td>4,0</td>
</tr>
<tr>
<td>Mínimo</td>
<td>141,3</td>
<td>209,8</td>
<td>243,0</td>
<td>513,4</td>
</tr>
<tr>
<td>Máximo</td>
<td>770,2</td>
<td>768,2</td>
<td>815,2</td>
<td>733,4</td>
</tr>
<tr>
<td>Media</td>
<td>383,5</td>
<td>433,5</td>
<td>520,2</td>
<td>606,0</td>
</tr>
<tr>
<td>Varianza</td>
<td>14087,5</td>
<td>13437,4</td>
<td>13255,4</td>
<td>8799,5</td>
</tr>
<tr>
<td>Desv. Est.</td>
<td>118,6</td>
<td>115,9</td>
<td>115,1</td>
<td>93,8</td>
</tr>
</tbody>
</table>

Tabla 9.3. Estadísticamente descriptiva para las tallas estimadas en las cinco localidades.

Como ya fue sugerido en trabajo previos (Scartascini et al., 2009; Scartascini y Volpedo, 2013), es posible que algunos ambientes de la costa norte del GSM hayan funcionado en el pasado como áreas de cría y desove para la corvina rubia, lo que explicaría los perfiles de tallas obtenidos y la enorme cantidad de evidencia vinculada con la explotación de estos recursos documentada en el área.

9.4 Tendencias espaciales en el registro pesquero

9.4.1 Consideraciones tafonómicas

9.4.1.a Variaciones espaciales en la preservación de restos óseos

Antes de determinar las diferencias o similitudes en el registro pesquero de la costa rionegrina es necesario establecer algunos parámetros para evaluar los procesos naturales o culturales que pudieron haber afectado la integridad de las muestras y generar sesgos o sobre-representaciones.

Como ya fue presentado y parcialmente discutido el registro pesquero de la costa del GSM presenta muestras provenientes tanto de sondeos como de contextos superficiales. Las muestras estratificadas se encuentran contenidas principalmente en los mantos de dunas costeros, mientras que la evidencia superficial proviene de terrazas marinas Holocenas y Pleistocenas que se encuentran a distancias variables de la línea de costa actual (hasta 2000 mts. en algunos casos) y en general en cotas elevadas de hasta 15 metros sobre el nivel del
Capítulo 9

Como primer punto se observaron variaciones de magnitud en la diversidad de especies detectadas en ambos contextos. En ningún caso (con excepción de Arroyo Verde 1) la riqueza específica detectada en los loci superficiales supera los 3 taxa y el patrón más común son los conjuntos monoespecíficos de corvina rubia. En cambio, los registros de sondeos alcanzan en algunos loci hasta 16 taxa diferentes. A las variaciones en la riqueza taxonómica hay que sumarle además las diferencias en cuanto los perfiles anatómicos de peces en ambos contextos. En los loci superficiales únicamente se recolectaron otolitos que por sus características morfológicas, tamaño y composición presentan un mayor potencial de preservación. En cambio en los sondeos se recuperaron elementos pertenecientes a todas las partes del esqueleto de los peces, aunque predomina el esqueleto axial y el craneal. En este sentido, es destacable mencionar que los estudios realizados en el área con relación a la formación de los concheros (Favier Dubois y Borella, 2007), mostraron que en esta clase de depósitos la preservación de restos óseos es muy buena. Esto se debe principalmente al ambiente alcalino y oxidante de la matriz arenosa en los que se encuentran contenidos los restos.

Sin embargo, al explorar las especies representadas en cada caso se observa que mientras que la corvina rubia se presenta como el recurso más explotado en el registro superficial, su importancia relativa en las muestras de sondeos es muy baja (Figura 9.10). Atendiendo a este patrón es que se planteó un seguimiento experimental acerca de la meteorización de la corvina en contextos superficiales. En tal sentido, se ha realizado un registro fotográfico y descriptivo (notas tafonómicas) de dos ejemplares de *M. furnieri* y *A. patachonicus*, en un espacio acondicionado para dichos estudios en el campus de la FACSO-UNCPBA (Olavarría). El objetivo principal es realizar las primeras observaciones sistemáticas respecto a las formas en que se meteorizan los restos óseos de estas dos especies, como también establecer consideraciones respecto del proceso inicial.
de desarticulación. En este sentido, se buscó detectar patrones que refieran a la modificación y destrucción diferencial de elementos óseos en contextos superficiales, expuestos a meteorización aérea. Los resultados iniciales de estos estudios mostraron que pese a pequeñas diferencias, el estado de las carcasas y meteorización de los huesos (esqueleto craneal y axial) es similar en ambas especies estudiadas (Scartascini y Borella, en preparación). Más allá de las condiciones de preservación de los restos óseos, este estudio es relevante porque permitirá comenzar a plantear cuestiones vinculadas a modos de explotación, procesamiento y descarte diferencial o no de las especies. Como ya fue observado para la Costa Noroccidental de Norteamérica, parece existir una relación clara entre el tamaño de los peces y la forma en que estos fueron capturados, procesados y consumidos (Lindstrom, 1996). Una posibilidad, entonces puede ser que las corvinas -por sus características bio-ecológicas, tallas, frecuencia, formas de captura, etc.-, hayan sido procesadas, consumidas y descartadas de forma particular por los grupos cazadores-recolectores del área y, en consecuencia, esto explicaría que sus restos no se encuentren depositados en los mismos conjuntos zooarqueológicos (concheros) donde aparecen casi la totalidad de restos de los demás recursos explotados (tanto ícticos como no ícticos).

En definitiva entonces, si bien es posible que los conjuntos superficiales se encuentren sesgados tanto en la diversidad taxonómica como en la representación anatómica de los conjuntos, no descartamos la posibilidad de que sean el resultado de pautas particulares de explotación de acuerdo a las especies de peces, sus tamaños y a los modos de captura. Aún sesgada, la evidencia superficial aporta información de gran relevancia para caracterizar la explotación de peces en el área y su importancia en términos pesqueros, permitiendo además discutir estrategias de pesca y variaciones en el uso de los espacios costeros.

9.4.1.b Origen de los conjuntos ictioarqueológicos

Como ya fue mencionado previamente, el primer criterio para evaluar el origen de los conjuntos ictioarqueológicos fue la consideración de las geoformas y los depósitos sedimentarios, así como la asociación contextual de estos materiales con otros restos arqueológicos.

En este sentido, -y como ya había sido evaluado por Scartascini (2010)- los criterios que permitieron considerar a las acumulaciones superficiales de otolitos como productos de las actividades pesqueras del pasado y no el resultado de procesos naturales independientes de las acciones humanas son:

1- en todos los casos los otolitos aparecen asociados a otros restos de inobjetable origen arqueológico (e.g. pesas líticas; instrumentos y desechos de talla lítica; tiestos cerámicos; etc.);

2- la cronología obtenida a partir del fechado de los otolitos se corresponde perfectamente con los datos cronológicos obtenidos de otros materiales arqueológicos próximos (valvas, carbón, hueso, etc.) (ver Scartascini et al., 2009; Favier Dubois y Scartascini, 2012);

3- la corvina no posee vejiga natatoria, por lo que los varamientos no son un fenómeno frecuente (A. Volpedo comunicación personal);
4- las unidades portadoras de los hallazgos (otolitos y pesas) son sedimentos eólicos, por lo que sería prácticamente imposible la incorporación de estos elementos en la matriz sin un agente humano. Por otra parte, cuando el hallazgo se realizó sobre las terrazas marinas Holocenas y Pleistocenas se determinó la independencia de los otolitos y el sustrato a partir de los fechados radiocarbónicos de ambos. En todos los casos resultó en diferencias cronológicas notables entre los eventos de pesca y la formación de la terraza marina (Favier Dubois y Kokot, 2011; Favier Dubois y Scartascini, 2012; Favier Dubois, 2013).

La evaluación conjunta de estos criterios permite sostener que los restos de peces recuperados en loci superficiales analizados son el producto de la explotación humana intensiva de ciertas especies, especialmente la corvina rubia.

Por su parte, los conjuntos ictioarqueológicos provenientes de sondeos corresponden en todos los casos a excavaciones de concheros (acumulaciones de valvas, carbones, otro material biológico y en algunos casos lítico), que se encuentran contenidos en depósitos eólicos sobre terrazas marinas. El criterio más certero para establecer el origen antrópico de los conjuntos ictioarqueológicos ha sido tradicionalmente la presencia de huellas de corte. Sin embargo como ya fue discutido en el Capítulo 4 estas marcas son bastante infrecuentes y difíciles de observar en los restos de peces (ver también Colley 1990; Zohar et al. 2001; Nagaoka 2005; Willis y Boehm, 2014). De hecho, en los conjuntos de restos óseos analizados en este libro no se detectó ninguna evidencia certera de huellas de corte. Los demás criterios para evaluar el origen de los conjuntos ictioarqueológicos son menos certeros y presentan algunas complicaciones (ver Capítulo 4). Como una forma de aproximarse a este problema a continuación presentamos los porcentajes de huesos con evidencias de alteración térmica y de restos con evidencias de deformación plástica.

Como puede observarse en la Figura 9.14 el porcentaje de huesos con alteración térmica varía entre los conjuntos excavados pero en términos generales
presenta valores por encima del 5% en todos los loci. Todas las localidades estudiadas exhiben conjuntos con porcentajes bajos de restos quemados. Sin embargo, en la localidad Bajo de la Quinta la totalidad de los sondeos excavados muestran valores muy bajos (en ningún caso superan el 4%) y comparativamente altos respecto de los restos con evidencias de deformación. No hay que olvidar que en esta localidad se registró la mayor cantidad de restos de lucerna (*Porichthys porosissimus*), es decir una especie que presenta varamientos masivos una vez al año (ver más adelante), por lo tanto no se puede descartar el ingreso de algunos huesos de esta especie por parte de otros predadores no humanos o incluso en los contenidos estomacales de animales ictiófagos presentes también en el registro zooarqueológico de esta localidad (e.g. lobos marinos). En el resto de los conjuntos analizados las evidencias de deformación plástica son muy escasas y los porcentajes de huesos quemados son relativamente altos.

Esta evidencia sumada a los controles geoarqueológicos y tafonómicos realizados por otros miembros del equipo (Favier Dubois y Borella, 2007), permiten sostener con argumentos válidos la asignación cultural de los restos ictioarqueológicos recuperados en sondeos y analizados en este trabajo.

9.4.2 Diversidad y abundancia del registro pesquero

Como primer punto, los análisis desarrollados en esta investigación mostraron que de igual forma que el resto de la evidencia arqueológica (Favier Dubois y Borella, 2011; Borella y Cardillo, 2012), el registro pesquero se distribuye de forma heterogénea a lo largo de la costa rionegrina y se concentra en determinados puntos del espacio costero. Se destacan en este sentido la costa norte (principalmente el tramo comprendido entre Bahía Creek y Bahía San Antonio) y el tramo sur de la costa oeste (entre Punta Pórfido y Arroyo Verde). Sin embargo, se observaron variaciones significativas en la frecuencia y densidad del registro en ambos sectores. Como ya fue expresado previamente la densidad y redundancia del registro pesquero documentado en la costa norte del GSM no tiene paralelos en ninguna otra área del golfo, pero tampoco en otro sector costero del extenso litoral atlántico patagónico.

No obstante, en conjunto los datos presentados y discutidos en este capítulo muestran una tendencia relativamente uniforme en cuanto a la variedad de especies icticas explotadas a lo largo del GSM. Esto permite sostener un patrón regional en la explotación de peces enfoocado en el ensamble de peces de los arrecifes costeros patagónicos. En líneas generales se trata de especies litorales que al menos durante una parte del año se localizan en las plataformas litorales rocosas del área. La diversidad de especies registrada en los arrecifes costeros patagónicos es relativamente baja y pocas veces supera la decena (Irigoyen y Galván, 2010). Los perfiles de las presas analizados a partir del registro ictioarqueológico en el área muestran una gran concordancia con los muestreos actuales en estos ambientes (Galván, 2008). Esto sugeriría cierta estabilidad ambiental en los ecosistemas costeros del área y su disponibilidad de recursos. En este sentido, llama la atención la ausencia de salmón de mar (*Pseudopercis semifasciata*) en la muestra ictioarqueológica, siendo esta una de las especies más productivas en términos de frecuencia y tamaño del ensamble de peces de los arrecifes en la actualidad. La ausencia de este taxón podría estar vinculada a una gran variedad de factores, como ser la preservación, el procesamiento diferencial, la poca oferta ambiental en el pasado o la nula o baja explotación por parte de los grupos humanos, sin embargo
Respecto de las tecnologías de pesca los análisis también sugieren un desbalance marcado en la frecuencia de artefactos en una y otra costa. Sin embargo, tanto las variables métricas como tecnológicas aquí analizadas sugieren cierta homogeneidad en la tecnología pesquera. A lo largo de la costa rionegrina se recolectaron guijarros con escotaduras laterales similares a los pesos líticos registrados en otras áreas de Patagonia (Massone y Torres, 2004; Torres, 2007 a y b; Gómez Otero, 2007; entre otros) y el mundo (Owen y Merrick, 1994; Greenspan, 1998; Galili et al., 2002, 2004; Bernal Casasola, 2008). A pesar que no se conoce con certeza la funcionalidad de estos artefactos, en distintos lugares del mundo se las caracterizó como pesas de redes tanto en contextos arqueológico como en etnográficos (Leach, 2006; Greenspan, 1998; Galili et al., 2002, 2004; entre otros). Las leves diferencias observadas entre los conjuntos de la costa norte y oeste parecen estar más vinculadas a cuestiones de adecuación local (profundidad, sustrato, cantidad de agua, pendiente, etc.) que a variaciones en la técnica de pesca. Sin embargo, en la costa norte se registró un reducido grupo de artefactos (pequeñas bolas carbonáticas) que presentan una morfología y tecnología de manufactura diferente al resto de las pesas. Por sus características morfológicas y tecnológicas estas pequeñas bolas pueden relacionarse con los pesos de línea documentados etnográficamente en Tierra del Fuego (Gusinde, 1982; Torres 2007a), lo que implicaría el desarrollo de una estrategia de pesca más selectiva.

En resumen, hasta aquí el escenario pesquero en la costa rionegrina muestra que las estrategias de pesca desarrolladas por los grupos cazadores recolectores en la costa del GSM pudieron estar fuertemente vinculadas a los factores ambientales y microambientales de los distintos espacios costeros. Las variaciones regionales en el registro pesquero (los perfiles, la frecuencia y las características ecológicas de las presas, sumado a las variaciones en la tecnología pesquera) estarían mostrando dos estrategias de pesca litorales disímiles a lo largo de la costa rionegrina. Por un lado, una estrategia pesquera enfocada en las especies de los arrecifes costeros. Este tipo de pesca se podría haber realizado durante la marea baja aprovechando el “entrampamiento” de los peces en las pozas y/o los canales de marea, a partir de una técnica relativamente selectiva, por ejemplo arpeneo, líneas de pesca, trampas o simplemente a partir de la recolección manual. No obstante, esto es difícil de evaluar ya que no se han registrado hasta la fecha ninguna de estas tecnologías en la costa rionegrina. El único antecedente de este tipo corresponde a un anzuelo estudiado por Gómez Otero (comunicación personal), proveniente de la costa norte del Chubut. Existe asimismo un dato anecdótico recopilado durante las entrevistas con pescadores artesanales de la Bahía San Antonio, realizadas por el autor de este libro durante el mes de Agosto de año 2011. Uno de ellos, que además fue un poblador pionero de la zona conocida como Saco Viejo en la espiga sur de la Bahía, mencionó la presencia de corrales de pesca en el área, que con el paso del tiempo y el comienzo de la actividad pesquera comercial en la zona fueron destruidos. Esta clase de estructuras fueron documentadas y bien estudiadas en distintos lugares del mundo (Momber, 1991; Bannerman y Jones, 1999; Randolph, 2004, McNiven et al., 2012), incluso en la costa chilena (Torres, 2007). Sin embargo, hasta el momento las prospecciones arqueológicas en el GSM no arrojaron evidencias positivas para la presencia de estas estructuras o indicios de restos de ellas.
El caso de la lucerna (*Porichthys porosissumus*) requiere un párrafo aparte. Esta es una especie semelpara, es decir que se reproduce sólo una vez en la vida, y la estación reproductiva (fines del verano) viene seguida de mortandades masivas de ejemplares que aparecen varados en las playas. Sin duda, de estos varamientos resultó una oferta importante de alimento para los grupos humanos. Incluso los agregados reproductivos de esta especie se forman en fondos rocosos poco profundos y son fácilmente ubicables por el fuerte ruido que producen los coros de los machos -por ejemplo en la actualidad en la Bahía San Antonio- (Orensanz comunicación personal).

Por otra parte, un grupo de *loci* arqueológicos detectados casi exclusivamente en la costa norte del GSM muestran perfiles de presas que sugerirían el aprovechamiento masivo de algunas especies. Al menos para el caso de las corvinas (*M. furnieri*) y los sargos (*D. argenteus*) los patrones ecológicos, la alta frecuencia y concentración de restos en los conjuntos y los perfiles de tallas obtenidos serían coincidentes con un tipo de estrategia de captura masiva. Además hay que sumar la co-ocurrencia de estos conjuntos ictioarqueológicos y las pesas líticas de red. Las redes de playa son dispositivos compuestos por al menos dos tecno-unidades (*sensu* Oswald, 1976): la malla de la red y los pesos (de diferentes tamaños dependiendo de su localización) que mantiene a la red en posición vertical y permiten que los peces queden enredados. Los sustratos rocosos no facilitan la operación de este tipo de tecnologías, debido a las altas posibilidades de “enganche” y destrucción del equipo a lo que se suma la pérdida de las presas. En cambio este tipo de tecnología de pesca resulta muy ventajosa en ambientes con sustratos blandos (playas de arena, entrantes costeros, etc.), por lo que sería esperable capturas algo diferentes a las realizadas en la plataforma rocosa. Tanto la corvina como el sargo se acercan a la costa en determinados momentos del año a reproducirse y a desovar en grandes cardúmenes en zonas de aguas claras y fondos blandos (Cousseau y Perrota, 2004). Esto es coincidente con lo observado en muchos conjuntos ictioarqueológicos de la costa norte. Este patrón fue bien documentado en un trabajo de Favier Dubois y Scartascini (2012). En ese estudio se observó que la mayor parte del registro pesquero en la costa norte se circunscribe a áreas que en la actualidad o en el pasado fueron entrantes marinos. Estos antiguos escenarios de pesca generaron un marco adecuado para la explotación masiva e intensiva de algunas especies, entre ellas la corvina y el sargo.

En síntesis, la evidencia presentada a lo largo del libro y discutida en este capítulo permite contrastar positivamente la hipótesis I, que plantea que “La actividad pesquera sistemática tuvo lugar en ambientes específicos dentro de la costa del GSM y se vio determinada por las características microambientales propias de cada sector (disponibilidad de recursos, sustrato, acceso a la línea de costa, bioproductividad marina y variedad de microambientes)." Los resultados alcanzados mostraron que la variabilidad ambiental y microambiental del GSM constituyó un marco adecuado para que los grupos humanos desarrollen diferentes estrategias de pesca que incluyen una frecuente actividad enfocada en los arrecifes costeros donde a partir de técnicas relativamente sencillas, incluso la recolección manual, es posible aprovisionarse de una buena variedad y cantidad de peces. Otra más específica se dio principalmente en la costa norte del golfo, en la que se aprovecharon las características microambientales de algunos sectores costeros y se explotaron de forma masiva otro tipo de especies.
DISCUSIONES. PARTE 2: TENDENCIAS TEMPORALES

10.1 Introducción

Hasta esta instancia todos los análisis realizados en este libro se focalizaron en describir y analizar el registro pesquero desde una perspectiva espacial. En este capítulo se presentan las principales tendencias cronológicas de este registro a partir de tres bloques cronológicos. El bloque temprano incluye los conjuntos con cronologías entre ca. 6000 y 4000 años AP; el bloque medio que agrupa los fechados en torno a ca. 3000 AP y finalmente el bloque cronológico tardío que se circunscribe los fechados entre 2000 y 800 años AP. El uso de este esquema cronológico se encuentra en parte estructurado a partir de los trabajos realizados por otros integrantes del equipo (ver Favier Dubois et al. 2009). Estos incluyen tendencias paleodietarias, cronológicas y faunísticas (ver Capítulo 3). Sin embargo, el planteo de estos tres bloques cronológicos corresponde a nuestra decisión en función de las características propias del registro pesquero y de los intereses y objetivos desarrollados en esta investigación. Se busca obtener tendencias cronológicas de grano grueso que permitan explorar y discutir las principales variaciones diacrónicas en el registro pesquero y las implicaciones de esta práctica a lo largo del tiempo. Como no se dispone de fechados radiocarbónicos para algunos conjuntos, se utilizaron criterios contextuales (localización, geoformas y asociación con otros conjuntos fechados) para la elaboración de los bloques.

Finalmente, estos resultados serán discutidos a la luz de los cambios ambientales detectados a nivel local y regional con el fin de evaluar el impacto que pueden o no haber producido en los productos y en las estrategias pesqueras a lo largo del tiempo.

10.2 Bloque Cronológico Temprano (6000-4000 años AP)

En la Tabla 10.1 se presentan los loci correspondientes a este bloque cronológico. En total, para este lapso se detectaron 29 loci con evidencia ictioarqueológica, de los cuales sólo dos provienen de sondeos y los 27 restantes corresponden a recolecciones superficiales. Los conjuntos incluidos en este bloque corresponden a los registros más antiguos del área que llamativamente presentan una intensa señal ictioarqueológica en todos los casos. Este patrón llevó a presuponer un destacado rol de la pesca en las ocupaciones iniciales del área (Scartascini et al., 2009).

En total la muestra para este bloque cronológico asciende a 5346 restos, lo que arroja un MNI estimado en 448 individuos. De estos sólo el 18,6% (809) proviene de loci superficiales, aunque si consideramos su aporte en términos de MNI el porcentaje aumenta notablemente (86,2%). Esto se explica porque -como ya fue mencionado previamente- la evidencia superficial corresponde casi...
exclusivamente a otolitos de *M. furnieri*. Asimismo, como se observa en la Tabla 10.1 la totalidad de la muestra correspondiente a este bloque cronológico proviene de tres localidades de la costa norte. Este registro más antiguo se localiza en determinados sectores litorales, emplazados por lo general en cotas altas, a grandes distancias de la línea de costa actual, lo que indica un nivel del mar más alto que el actual. No hay que olvidar que para esta cronología se documentó un aumento del nivel marino a nivel regional (Schellmann y Radke, 2010; ver también Capítulo 2).

<table>
<thead>
<tr>
<th>Localidad</th>
<th>Sector</th>
<th>Muestra</th>
<th>Proveniencia</th>
<th>Tamano Muestra</th>
<th>NSP</th>
<th>MN</th>
<th>Densidad *</th>
<th>Cronología</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC</td>
<td>Paleo</td>
<td>Sondeo 1 PALEO</td>
<td>Superfície</td>
<td>0,05 m³</td>
<td>47</td>
<td>2</td>
<td>8,80/m²</td>
<td>5310 AP</td>
<td>Favier Dubois y Scartascini, 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Terraza F. 1</td>
<td>Superfície</td>
<td>100 m³</td>
<td>45</td>
<td>24</td>
<td>0,45/m²</td>
<td>5110 AP</td>
<td>Favier Dubois y Scartascini, 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Terraza F. Palea</td>
<td>Superfície</td>
<td>50 m³</td>
<td>32</td>
<td>18</td>
<td>0,64/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Terraza F. Palea 1</td>
<td>Superfície</td>
<td>2 pers 25</td>
<td>15</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Terraza F. 2</td>
<td>Superfície</td>
<td>25 m³</td>
<td>5</td>
<td>3</td>
<td>0,2/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pesas Palea</td>
<td>Superfície</td>
<td>100 m³</td>
<td>61</td>
<td>27</td>
<td>0,61/m³</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conchero Palea</td>
<td>Superfície</td>
<td>4 m³</td>
<td>20</td>
<td>11</td>
<td>5/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BQ</td>
<td>Terrazas</td>
<td>Sec. Otolitos</td>
<td>Superfície</td>
<td>4 m³</td>
<td>71</td>
<td>36</td>
<td>17,7/m²</td>
<td>6080 AP</td>
<td>Scartascini et al., 2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T F (bolsa 1)</td>
<td>Superfície</td>
<td>100 m³</td>
<td>14</td>
<td>9</td>
<td>0,13/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>T F (bolsa 2)</td>
<td>Superfície</td>
<td>50 m³</td>
<td>12</td>
<td>7</td>
<td>0,22/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>T F (bolsa 3)</td>
<td>Superfície</td>
<td>25 m³</td>
<td>6</td>
<td>4</td>
<td>0,16/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>T F (bolsa 4)</td>
<td>Superfície</td>
<td>100 m³</td>
<td>37</td>
<td>19</td>
<td>0,37/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>T F (bolsa 5)</td>
<td>Superfície</td>
<td>100 m³</td>
<td>6</td>
<td>3</td>
<td>0,06/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TF3</td>
<td>Superfície</td>
<td>100 m³</td>
<td>7</td>
<td>4</td>
<td>0,07/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TF Fondo</td>
<td>Superfície</td>
<td>100 m³</td>
<td>8</td>
<td>5</td>
<td>0,08/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>T Holocena</td>
<td>Superfície</td>
<td>4 m²</td>
<td>87</td>
<td>48</td>
<td>21,7/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. T. (bolsa 1)</td>
<td>Superfície</td>
<td>25 m³</td>
<td>21</td>
<td>15</td>
<td>0,84/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. T. (bolsa 2)</td>
<td>Superfície</td>
<td>50 m³</td>
<td>5</td>
<td>3</td>
<td>0,1/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BQ TF MILIT</td>
<td>Superfície</td>
<td>100 m³</td>
<td>38</td>
<td>19</td>
<td>0,38/m²</td>
<td>4980 AP</td>
<td>Favier Dubois y Kokot, 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T del Conchero</td>
<td>Superfície</td>
<td>50 m³</td>
<td>18</td>
<td>10</td>
<td>0,34/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>T alta</td>
<td>Superfície</td>
<td>9 m³</td>
<td>31</td>
<td>18</td>
<td>3,4/m²</td>
<td>4800 AP</td>
<td>Favier Dubois y Scartascini, 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T 1BQ1</td>
<td>Superfície</td>
<td>50 m³</td>
<td>7</td>
<td>4</td>
<td>0,12/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lentrante E</td>
<td>Superfície</td>
<td>4 m³</td>
<td>16</td>
<td>11</td>
<td>3,75/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lentrante O</td>
<td>Superfície</td>
<td>4 m³</td>
<td>9</td>
<td>8</td>
<td>2/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>T.C Norte</td>
<td>Superfície</td>
<td>25 m³</td>
<td>12</td>
<td>6</td>
<td>0,44/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSA</td>
<td>SAO</td>
<td>PC Sondeo 1</td>
<td>Superfície</td>
<td>0,2 m³</td>
<td>2230</td>
<td>46</td>
<td>11050/m³</td>
<td>5290 AP</td>
<td>Favier Dubois, 2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PC Sondeo 2</td>
<td>Superfície</td>
<td>0,3 m³</td>
<td>1210</td>
<td>14</td>
<td>4033/m³</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. ALPAT ini</td>
<td>Superfície</td>
<td>4 m³</td>
<td>16</td>
<td>9</td>
<td>4/m³</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PC</td>
<td>Superfície</td>
<td>100 m³</td>
<td>50</td>
<td>27</td>
<td>0,50/m³</td>
<td>4560 AP</td>
<td>Scartascini et al., 2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PP</td>
<td>Superfície</td>
<td>50 m³</td>
<td>79</td>
<td>23</td>
<td>1,58/m³</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PP m1</td>
<td>Superfície</td>
<td>25 m³</td>
<td>31</td>
<td>15</td>
<td>1,24/m³</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Los valores de densidad se expresan en m³ para los conjuntos superficiales y en m³ para los prove-nientes de sondeos.

Los análisis sobre la diversidad taxonómica registrada para este bloque cronológico muestran una baja representación de especies. Esto puede estar en parte influenciado por el sesgo de preservación que seguramente afecta a la muestra superficial, de hecho este tipo de conjuntos sólo presentaron otolitos de *M. furnieri* y ningún otro tipo de evidencia arqueofaunística pudo ser recuperada. No obstante, también se observa una relativamente baja riqueza taxonómica y una alta dominancia en los sondeos estudiados para esta cronología. Como sucede en los conjuntos recuperados en superficie, en los tres sondeos sólo una especie domina el conjunto.
Capítulo 10

Figura 10.1. Estimadores de la diversidad taxonómica para los tres sondeos excavados del bloque cronológico.

Cómo ya fuera presentado en capítulos previos, los dos sondeos de la localidad Bahía San Antonio (PC Sondeo 1 y PC Sondeo 2) presentan una alta dominancia de *Diplodus argenteus*, aunque se presentan en muy bajas proporciones otros taxones (Figura 10.1 y 12.2). *Diplodus argenteus* es una especie que en la actualidad, durante momentos específicos del año (fines del otoño), penetra en los canales de marea de esta Bahía en grandes cantidades. La estructura, disponibilidad y densidad de los conjuntos sugerirían una estrategia masiva de pesca dirigida a esta especie. El caso del Sondeo 1 PALEO en Bahía Creek es algo diferente, ya que corresponde a un pequeño conchero en donde la frecuencia de restos ictioarqueológicos registrada es mucho menor. Sin embargo, aunque en bajo número, en este caso sólo se determinó la presencia de una única especie: *Acanthistius patachonicus*. A pesar de que no se realizaron análisis de talla sobre los huesos de esta especie, la comparación con la muestra de referencia nos permitió observar que se trata de ejemplares de gran tamaño, al menos 50 cm.

Figura 10.2. Variaciones porcentuales de los taxones correspondientes a los conjuntos del bloque cronológico temprano.
Esto último también se observó para la muestra superficial, sobre la que se realizaron análisis de tallas a partir de los otolitos. Como se observa en la Figura 10.3, todos los conjuntos corresponden a ejemplares adultos o juveniles grandes y en todos los casos se registraron tallas por encima de los 200 mm (con la excepción del locus pesas paleo de BC) y hasta los 720 mm.

La totalidad de la muestra presenta conjuntos con mucha variación interna, lo que hace presuponer una técnica de pesca con bajo grado de selección. Como ya fue explorado en capítulos previos, existen ciertas diferencias en los perfiles de talla entre las localidades. En este sentido se observan variaciones significativas ($F= 10,63; \ p<0,01$) entre BC por un lado y BQ y BSA por otro lado. Comparativamente BC presenta una mayor cantidad de ejemplares juveniles respecto al resto de las localidades (Figura 10.3). Esto tal vez puede vincularse con ambientes de pesca diferentes, lo que podría implicar variabilidad en la oferta de recursos o técnicas de captura diferentes. Sin embargo, en los tres casos se registraron tecnologías de pesca similares y perfiles de presas homogéneos (en cuanto a la talla y a la frecuencia), ambas características son congruentes con un método de pesca masivo, posiblemente redes.

En forma sintética entonces, entre ca. 6000 y 4000 años AP las localidades de la costa norte (BC, BQ y BSA) se caracterizan por presentar una intensa señal ictioarqueológica que se registra tanto en conjuntos superficiales como en sondeos excavados (sin asociación de restos de otros vertebrados). Más allá de los posibles sesgos tafonómicos en la representación taxonómica, parecería existir un patrón dirigido a la explotación de unas pocas especies icticas de alto rendimiento: *Micropogonias furnieri*, *Diplodus argenteus* y *Acanthistius patachonicus*.
10.3 Bloque Cronológico Medio (ca. 3000 años AP)

Como se observa en la Tabla 10.2, todos los fechados radiocarbónicos obtenidos para los conjuntos de este bloque cronológico se agrupan exclusivamente en torno a 3000 años AP. La muestra total alcanza los 5657 restos provenientes de ocho muestreos a lo largo de la costa del GSM. La proveniencia de las muestras es mayoritariamente producto de la excavación de sondeos y sólo dos conjuntos corresponden a loci superficiales. El MNI estimado para todo el bloque es de 142 ejemplares (Tabla 10.2).

El total de la muestra incluye registros de la costa norte y oeste del golfo y se agrupa en cuatro localidades a lo largo de la costa rionegrina.

| Localidad | Sector | Muestreo | Proveniencia | Tamaño Muestreo | NISP | MNI | Densidad* | Cronología | Referencia |
|-----------|--------|----------|--------------|-----------------|------|-----|-----------|------------|----------------|----------------|
| BQ | Sector 1 | Sondeo 2 | Sondeo | 0,15 m3 | 923 | 20 | 6153/m3 | 3100 AP | Marani, 2011 |
| SAO | No K | Superficie | 50 m2 | 26 | 15 | 0,52 m3 | 3210 AP | Scartascini et al., 2009 |
| SV | C. Sondeo 1 | Sondeo | 0,2 m3 | 2001 | 43 | 10005/m3 | 2170 AP | Favier Dubois, 2013 |
| PO | Sector 2 | Sondeo 1 | Sondeo | 0,4 m3 | 685 | 16 | 1217/m3 | 2994 AP | Borella y L’Heureux, 2014 |
| | | Sondeo 2 | Sondeo | 0,3 m3 | 402 | 11 | 1340/m3 | | |
| | Sector 3 | Sondeo 1 | Sondeo | 0,1 m3 | 18 | 3 | 180/m3 | | |
| | | Sondeo 2 | Sondeo | 0,2 m3 | 40 | 5 | 200/m3 | | |
| AV | Sector 1 | Rec. Sup | Superficie | 90 m2 | 488 | 29 | 5.42 m2 | 3000 AP | Borella y Cardillo, 2012 (Proyecto PIP) |

Tabla 10.2. Conjuntos ictioarqueológicos correspondientes al bloque cronológico medio. *Los valores de densidad se expresan en m2 para los conjuntos superficiales y en m3 para los provenientes de sondeos.

Figura 10.4. Estimadores de la diversidad taxonómica para los seis sondeos y el registro superficial de AV1 del bloque cronológico.
Los análisis referentes a la diversidad taxonómica muestran tendencias dispares entre los conjuntos. Como se observa en la Figura 10.4, la riqueza taxonómica es relativamente alta para todos los depósitos excavados en este bloque, con excepción de los dos sondeos del sector 3 de Punta Odriozola. Iguales tendencias se observan para la dominancia con valores que se agrupan entre 0,4 y 0,6, siendo el Sonddeo 2 del Sector 3 de Punta Odriozola la única excepción (0,8). En resumen, estos estimadores muestran un perfil de diversidad taxonómica, distinto al observado para el bloque temprano. Aquí se observa una mayor riqueza de especies explotadas y valores de dominancia medios, lo que implica el predominio relativo de unas pocas especies por sobre el resto. La Figura 10.5 presenta la diversidad taxonómica explotada en este bloque cronológico. Como puede observarse, existe un gran número de taxones (al menos 15 taxas) aunque predominan *A. patatonicus; B. argentinus; Odontesthes* sp. y *P. brasilianis*. Es decir especies típicas de fondos duros que en la actualidad pueden ser vistas en pozones y canales de marea durante la bajamar.

Figura 10.5. Variaciones porcentuales de los taxones correspondientes a los conjuntos del bloque cronológico medio.

Pese a que no se realizaron análisis métricos para estimar la talla de estas especies, las observaciones realizadas durante la cuantificación de los conjuntos permitieron inferir que se trata de ejemplares de talla mediana a mediana-pequeña. Lo contrario se observa para el registro superficial. Los análisis alométricos realizados sobre los otolitos de *M. furnieri* detectados en esta cronología muestran en todos los casos ejemplares adultos de tallas superiores a los 360 mm y que en algunos casos superan los 700 mm de longitud total, es decir se mantiene la tendencia observada para el bloque temporal temprano. Sin embargo, a diferencia del bloque cronológico anterior, la frecuencia de loci superficiales y de otolitos de *M. furnieri* es relativamente reducida. Esto puede relacionarse con el aumento en la distribución espacial que experimenta el registro pesquero durante este bloque cronológico. Las muestras de la costa norte se relativizan frente al número de conjuntos de la costa oeste, litoral en donde la corvina rubia no estaba ampliamente disponible (ver Capítulo 9). Por este motivo el conjunto ictioarqueológico superficial para este bloque cronológico no permite discutir profundamente...
las técnicas de pesca. Los análisis sugieren diferencias entre las muestras analizadas tanto a nivel de frecuencia de restos como en las tallas estimadas. El locus No K que se emplaza en la Bahía San Antonio, presenta una densidad relativamente alta de restos (al menos 15 individuos en 50 m²), con tallas medias en el orden de los 550 mm. Por otra parte, AV 1 presenta una mayor diversidad de especies recuperadas (la mayoría corresponde a restos óseos, ver Capítulo 8) y unos pocos otolitos de *M. furnieri* con tallas medias superiores a las registradas en No K, en el orden los 590 mm (Figura 10.6). El registro óseo recuperado en AV sugiere también la presencia de ejemplares de tallas grandes o medianas, particularmente en el caso de *A. patachonicus*.

Figura 10.6. Tallas estimadas para los conjuntos del bloque cronológico. La línea punteada indica el límite de las tallas juveniles y adultas, lo que implica que todos los ejemplares son adultos.

Entonces, para el 3000 AP se observa un cambio en la escala del registro pesquero, que pasa de estar localizado exclusivamente en la costa norte a presentar una distribución regional a lo largo de toda la costa rionegrina. No se pueden descartar problemas de formación y preservación de los conjuntos en escala regional (ver Favier Dubois, 2013). No obstante, este cambio en la escala regional del registro pesquero es llamativo para ese momento cronológico ya que señala el aumento proporcional de las muestras provenientes de sondeos en relación a las de superficie, lo que tal vez podría vincularse con los eventos de sedimentación eólica propuestos por Favier Dubois (2013). Las tendencias principales observadas para esta cronología sugieren la incorporación de especies más pequeñas en el registro, sobre todo el espectro de taxa vinculados a los arrecifes costeros, lo que podría implicar el desarrollo de técnicas más selectivas o individuales en la recolección de estas especies dentro de las plataformas litorales rocosas contiguas a los loci. Por otra parte, la evidencia recuperada en superficie (tanto los otolitos, como los restos óseos de AV1) muestran cierta continuidad en la explotación de especies de gran tamaño, como por ejemplo las corvinas y los meros, aunque en una escala menor a la documentada en momentos previos.

10.4 Bloque Cronológico Tardío (2000- 800 años AP)

Como se observa en la Tabla 10.3 los fechados radiocarbónicos obtenidos para los conjuntos de este bloque cronológico se agrupan entre 2000 y 800 años radiocarbónicos AP. La muestra total alcanza los 4408 restos provenientes de 17 muestreos localizados exclusivamente en la costa norte del GSM. La muestra proviene principalmente de sondeos (n=11) y seis conjuntos corresponden a loci superficiales. El MNI estimado para todo el bloque es de 198 ejemplares.
Tabla 10.3. Conjuntos ictioarqueológicos correspondientes al bloque cronológico tardío. *Los valores de densidad se expresan en m2 para los conjuntos superficiales y en m3 para los provenientes de sondeos.

De igual forma que lo observado para el bloque cronológico medio, los estimadores de la diversidad taxonómica muestran tendencias variables entre los conjuntos (Figura 10.7), lo que tal vez en parte pueda ser explicado por las diferencias en el tamaño de las muestras (Tabla 10.3). La riqueza taxonómica indica mucha variación entre los conjuntos. El Ntaxa varía entre dos y once especies, aunque predominan los valores cercanos a seis. Respecto de la dominancia, casi todos los valores estimados para este bloque cronológico se agrupan por debajo de 0,5, lo que implica conjuntos heterogéneos. Sólo un locus presenta valores altos de dominancia (PAE S.3), es decir constituye una muestra prácticamente dominada por una especie (Figura 10.7).

En resumen, el patrón de diversidad taxonómica observado para este bloque cronológico muestra dos tendencias principales. En primer lugar, una gran variación en cuanto a los perfiles de riqueza taxonómica, posiblemente afectados por los tamaños de las muestras y que en promedio arrojan valores relativamente menores que los observados para el bloque cronológico medio; esto implicaría una reducción en la diversidad de taxa explotados para este bloque cronológico. En segundo lugar, perfiles de dominancia relativamente bajos (en comparación con los demás bloques), lo que implica una representación equilibrada de las especies en los conjuntos.
La diversidad de especies icticas explotadas para este bloque cronológico incluye 15 taxa, entre los que se destacan: *A. patachonicus; B. argentinus; E. maclovinus; M. furnieri; Odontesthes sp.; P. brasilianis y P. porosissimus* (Figura 10.8). Llama la atención la fuerte representación de *P. porosissimus* en casi todos los loci del bloque cronológico. *P. porosissimus* habita fondos arenosos y fangosos en aguas profundas (hasta los 200 m) y durante el verano busca arrecifes rocosos costeros para reproducirse. Es una especie de talla mediana/pequeña (máximo 30 cm) con bajo contenido cárnico por lo que en la actualidad no es comercialmente explotada (Cousseau y Perrota, 2004). Presenta un patrón estacional bien marcado hacia principios del otoño (luego de la migración de los juveniles), cuando es frecuente encontrar cientos de ejemplares adultos muertos en los depósitos de playa. También es interesante para destacar el caso de *Odontesthes* sp.; en la actualidad los pejerreyes únicamente son recuperados en playas con fondos blandos, por ejemplo Mar Grande, en la Bahía San Antonio, durante los meses de invierno que es cuando se acercan a la costa.

![Figura 10.8. Variaciones porcentuales de los taxones correspondientes a los conjuntos del bloque cronológico tardío.](image)

La evidencia ictioarqueológica recuperada para esta cronología muestra la incorporación de especies pequeñas de bajo aporte económico. Además, se observa una representación de especies que sugieren la explotación de peces en distintas estaciones del año, si asumimos estabilidad en los patrones ecológicos de las especies.

Al igual que en los bloques cronológicos previos el registro superficial se circunscribe prácticamente a otolitos de *M. furnieri*, aunque también se registraron unos pocos otolitos de *Umbrina canosai* y *Netuma barbus*. En este sentido los conjuntos superficiales del bloque cronológico tardío presentan mayor variabilidad taxonómica que la observada en bloques previos (donde sólo se recuperaron otolitos de corvina), esto puede deberse a una mayor cantidad de especies explotadas durante estos momentos y/o a una mayor integridad de los conjuntos más tardíos (ver Figura 10.9).
Federico L. Scartascini

Figura 10.9. Tallas estimadas para *M. furnieri* en los conjuntos del bloque tardío. La línea punteada indica que todos los ejemplares tienen tallas adultas.

Los análisis de talla de *M. furnieri* para este bloque muestran la presencia exclusiva de ejemplares adultos, aunque existe cierta variación en los perfiles de tamaño entre las muestras (Figura 10.9). En líneas generales este patrón sería coincidente con un tipo de técnica de pesca masiva dirigida. No obstante la presencia únicamente de adultos podría indicar variaciones tanto en los artefactos de pesca (e.g. tamaño del enmalle en la red) como en el momento de pesca (estacionalidad).

En síntesis, entonces para el bloque cronológico referente al 2000-800 años radiocarbónicos AP el registro pesquero se circunscribe nuevamente a la costa norte del GSM. Además los análisis ictioarqueológicos muestran la incorporación de especies que implican actividades de pesca en distintas estaciones a lo largo del año. Se destacan taxa de bajo retorno energético individual como por ejemplo la lucerna (*P. porosissimus*) y los pejerreyes (*Odontesthes* sp.). En conjunto la diversidad de especies sugiere el aprovechamiento sistemático de canales y pozas de marea a partir de técnicas de pesca dirigidas. El registro superficial por su parte muestra la continuidad temporal en la explotación de las corvinas, a la que se suman otras especies. Como se observa en la Figura 10.9 los perfiles de talla para corvina rubia muestran mucha variación, en algunos conjuntos (e.g. SV2 y LNE) la distribución de tallas presentaría un patrón más selectivo de ejemplares grandes, mientras que el resto de los conjuntos podrían vincularse con técnicas más masivas.

10.5 Comparación entre bloques

10.5.1 Variaciones diacrónicas en la preservación de los restos óseos

Luego de caracterizar el registro ictioarqueológico de cada bloque cronológico y antes de establecer las principales comparaciones entre ellos, resulta necesario realizar una evaluación acerca de la historia tafonómica de las muestras. Inicialmente, en este acápite se pretende evaluar si existen diferencias en el grado de fragmentación y preservación ósea entre los bloques cronológicos. La expectativa inicial en este sentido sería que los conjuntos más antiguos se encuentren más impactados por los diferentes agentes y procesos tafonómicos que los más recientes, lo que generalizaria diferencias en la representatividad e integridad entre bloques.
En lo que respecta a la completitud de los restos óseos (WMI), los valores promedios estimados para cada bloque no presentan diferencias de importancia y se ubican entre 75% y 80% de completitud en todos los casos (Figura 10.10). Se observa además un leve aumento en el %WMI para momentos tardíos respecto de lo observado en los bloques previos, aunque estas diferencias son muy pequeñas e indican poca variabilidad a lo largo de la secuencia del GSM.

![Figura 10.10. Proporciones de completitud ósea (%WMI) entre bloques cronológicos.](image)

Distinta es la tendencia que se observa al establecer una comparación entre bloques a partir de la proporción de restos recuperados (NSP) sobre restos identificados taxonómicamente (NISP). Esta proporción es utilizada como un estimador de la integridad de los conjuntos e implica que cuanto más grandes son los valores observados respecto de “1”, menor es la integridad del conjunto óseo.

![Figura 10.11. Proporción de restos recuperados (NSP) sobre restos identificados (NISP) por bloque cronológico.](image)

En este sentido, los valores medios sugieren una mayor integridad promedio para los conjuntos con cronologías cercanas al 3000 AP (Figura 10.11), lo que se condice con la expectativa inicial acerca del impacto tafonómico diferencial entre conjuntos más tempranos y más tardíos, considerando los contextos. Pese a esto, las diferencias detectadas no son de gran magnitud por lo que sugieren cierta estabilidad en la integridad de los conjuntos ictioarqueológicos a lo largo del
tiempo en la costa del GSM. No obstante, hay que hacer una salvedad respecto de estas tendencias, ya que como se expresó previamente existen diferencias en las especies representadas entre bloques cronológicos. La incorporación de especies más pequeñas (con estructuras óseas más frágiles) para momentos tardíos agrega una nueva dimensión en la que podría estar actuando la variación de la integridad de los conjuntos. En suma, la evolución de la integridad de los conjuntos incluye aspectos cronológicos y también variaciones en la diversidad y tamaño de las especies involucradas. En el futuro se deberán incorporar nuevos análisis (controles tafonómicos sobre especies más pequeñas de peces) que permitan generar una evaluación más certera de estas tendencias.

10.5.2 Abundancia

La Figura 10.12 presenta la frecuencia de restos ictioarqueológicos y el número de individuos estimados para cada bloque cronológico. En términos de NISP se observa que el bloque medio es el que mayor frecuencia de restos presenta seguido por el bloque temprano y por último el bloque tardío. También se pudo constatar una tendencia decreciente en la frecuencia de la evidencia superficial desde el Holoceno medio hasta el Holoceno tardío final. No obstante, estas tendencias se invierten al establecer una comparación en términos de MNI (Figura 10.12a). Considerando este indicador, se observa que para el bloque temprano la abundancia de peces supera ampliamente a la registrada en momentos posteriores. Se advierte un fuerte descenso desde el bloque temprano hacia el medio y luego un leve incremento hacia el final de la secuencia.

Figura 10.12. a) Número mínimo de individuos entre bloques cronológicos b) frecuencia de restos de peces recuperados entre bloque cronológicos. Se presentan el aporte tanto de los conjuntos superficiales como de los sondeos y la sumatoria de ambos.

Similares tendencias se observan al analizar la densidad de restos por metro cúbico para el caso de las muestras recuperadas en sondeos y la densidad de restos por metro cuadrado para las de superficie. En ambos casos parece existir un patrón decreciente en la densidad media de restos hacia momentos más tardíos. Una excepción es el caso de la densidad estimada en los conjuntos superficiales del bloque medio, dado que adquieren valores más altos que los registrados para el bloque cronológico temprano. Sin embargo, estas tendencias pueden estar siendo afectadas por la muestra correspondiente a Arroyo Verde 1 (AV 1) que si bien corresponde a un contexto superficial, presenta características bien diferentes al resto de los conjuntos superficiales del área, que básicamente se componen de otolitos.
Entonces si se excluye esa muestra del análisis, la densidad por metro cuadrado adquiere una tendencia casi lineal en función de la cronología, muy similar a la observada para los sondeos (Figura 10.13b).

La evaluación conjunta de los diferentes indicadores de abundancia en el GSM muestra un claro patrón cronológico en la explotación de peces. Se advierte una gran frecuencia de peces en los conjuntos tempranos -principalmente en contextos de superficie- y una paulatina disminución tanto en términos de frecuencia de restos como en cantidad de ejemplares estimados.

10.5.3 Diversidad taxonómica

En lo que refiere a la diversidad de taxa explotados los análisis sobre las muestras recuperadas en sondeos sugieren algunas diferencias entre bloques cronológicos. Los valores medios de la riqueza y la dominancia se encuentran graficados en la Figura 10.14. Como allí se observa la riqueza de especies explotadas experimenta un fuerte crecimiento desde momentos tempranos (media=3,2) hasta el bloque medio en donde alcanza la media más alta registrada para todas las secuencias, es decir siete taxa. Luego de este punto, la riqueza media se reduce levemente hacia el bloque tardío (media=5,9) (Figura 10.14b). Estas tendencias muestran que en el 3000 AP la diversidad de especies explotadas fue la más alta de toda la secuencia. Sin embargo, estas tendencias pueden estar siendo afectadas por las diferencias en los tamaños de las muestras entre bloques.

Para estudiar la diversidad taxonómica entre bloques y contemplar las diferencias en el tamaño de las muestras se realiza el procedimiento de rarefacción. Efectivamente entonces, los análisis muestran que las tendencias antes descriptas se encuentran afectadas por el tamaño de la muestra. La
rarefacción sugiere que a un mismo número de especímenes (n= 809, es decir la muestra más pequeña que en este caso corresponde al bloque temprano), el bloque cronológico tardío es el que presenta la mayor riqueza de especies explotadas. Ambos análisis (sobre medias y rarefacción) sugieren cierta homogeneidad en la cantidad de taxones explotados en momentos medios y tardíos: el verdadero salto de la riqueza se observa a partir del 3000 AP.

Figura 10.15. Curvas de rarefacción para los tres bloques cronológicos del registro ictioarqueológico de la costa rionegrina.

Esta misma tendencia se observa en la representación de especies dentro de cada bloque, es decir la dominancia. Mientras que para momentos tempranos se registran muestras muy heterogéneas, dominadas casi exclusivamente por una especie, para los bloques medio y tardío se observa mayor heterogeneidad, es decir representación más equilibradas de distintos taxa (Figura 10.14b, Figura 10.15 y Figura 10.16). Esto es bien notorio para la muestra correspondiente al bloque tardío en donde la dominancia promedio presenta valores bajos (Figura 10.14b).

La Figura 10.16 presenta las proporciones de especies representadas a lo largo de la secuencia del GSM. Como ya fue sugerido más arriba parece existir una tendencia diacrónica en la incorporación de especies de menor rendimiento energético y que además sugiere la explotación íctica en distintas estaciones a lo largo del año.

10.5.4 Tendencias temporales

La evaluación de las representaciones de restos óseos reveló una tendencia decreciente en la frecuencia de peces desde el Holoceno medio al Holoceno tardío. Conjuntamente se registró un aumento en la riqueza de especies explotadas, que se corresponde además con la inclusión de taxa de menor rendimiento energético. Asimismo los análisis evidenciaron cambios en la distribución de las especies explotadas, es decir mientras que para momentos tempranos se registraron actividades pesqueras dirigidas a unas pocas especies (corvina rubia; sargo y en menor medida mero) para los momentos finales se desarrolló un patrón de captura más equilibrado, en el que todas las especies se encuentran representadas en porcentajes similares (una excepción a este patrón es la lucerna, ver Capítulo 9.4.2) (Figura 10.16).

En conjunto, estos datos sugieren variaciones diacrónicas en las estrategias de pesca desarrolladas por los grupos humanos en el GSM. Tanto la evidencia proveniente de loci superficiales como la recuperada en sondeos sugieren que para momentos tempranos las actividades de pesca habrían seguido una estrategia masiva, posiblemente a partir de redes de pesca, focalizada en unas pocas especies de gran retorno alimenticio. Se destacan principalmente la corvina rubia (*M. furnieri*) y el sargo (*Diplodus argenteus*). Ambas especies presentan en la actualidad un patrón estacional bien marcado cuando se agregan en grandes cardúmenes en áreas costeras. Los análisis de estacionalidad a partir del conteo de bandas opacas e hialinas en otolitos de corvina mostraron que la explotación de este recurso se dio entre los meses de noviembre y enero (Scartascini et al., 2013). Esta tendencia se registró para conjuntos que van desde el Holoceno medio hasta el Holoceno tardío, lo que además se corresponde con el patrón ecológico de las especies en la actualidad. En el caso del sargo, a pesar de que no se realizaron análisis de estacionalidad, la información actual en la Bahía de San Antonio muestra que la concentración de ejemplares adultos en grandes cantidades se produce desde fines del verano hasta inicios del otoño. En definitiva entonces, el registro ictioarqueológico, sumado a la presencia de pesas líticas y la información actual sugieren que durante el bloque cronológico temprano la explotación de peces se dio de forma masiva, y durante una estación bien marcada, es decir los meses cálidos del año en las tres localidades estudiadas.

Este tipo de estrategias de pesca se habrían desarrollado únicamente en ciertos espacios de la costa rionegrina en donde se configuraban las condiciones adecuadas para una práctica pesquera intensiva. Hay que considerar además, que los escenarios costeros en los que los antiguos cazadores recolectores llevaron adelante sus actividades pesqueras eran bastante diferentes a los observados en la actualidad. Para este tramo del litoral marítimo argentino se registraron variaciones de importancia en el nivel marino entre los 6000 y 4000 años radiocarbónicos antes del presente. La transgresión marina documentada para esta cronología habría inundado espacios bajos, entre terrazas marinas pleistocenas y cañadones fluviales, lo que habría dado lugar a la formación de pequeñas bahías, ensenadas y canales en lo que entonces era una costa muy irregular. La Figura 10.17 muestra un modelo de elevación digital elaborado por Favier Dubois y Scartascini (2012) que estima las variaciones en línea de costa para las tres localidades de la costa norte del GSM en donde se recuperó la mayor parte de la evidencia pesquera temprana.
En este contexto, la antigua morfología costera habría favorecido la aparición de ambientes litorales protegidos, como los que en la actualidad muchas especies usan para reproducirse y desovar, en los que el uso de las redes habría proporcionado una abundante biomasa de captura ictíca. A esto hay que sumarle que los análisis paleoambientales desarrollados en el área (que hasta el momento se restringen a los últimos 4000 años AP) muestran para este periodo, una paulatina disminución en la productividad marina acompañada de un descenso en la temperatura promedio del mar a nivel local (Favier Dubois et al., 2009) (Figura 10.18).

Figura 10.17. Línea de costa actual y escenarios simulados generados por un aumento en el nivel del mar en las tres localidades de la costa norte (de izquierda a derecha: Bahía Creek, Bajo de la Quinta y Bahía San Antonio). Las simulaciones se aproximan a la costa de los sitios de pesca fechado entre ca. 6000 - 4.000 radiocarbónicos AP. Esta aproximación es mejor en BSA (3a, 8 msnm) que otras localidades como BQ (3b, 7 msnm) o BC (3c, 10 msnm), debido a la presencia de altas dunas que introducen modificaciones topográficas en los dos últimos (Tomado de Favier Dubois y Scartascini, 2012:65).

Figura 10.18. Valores de δ^{18}O y δ^{13}C desde 4000 años AP hasta el presente (Tomado de Favier Dubois et al., 2009: 991).
En conclusión, para momentos tempranos ciertos ambientes costeros en la costa norte rionegrina habrían funcionado como escenarios adecuados para el desarrollo de una intensa y productiva actividad pesquera. Esta intensidad no fue únicamente documentada a partir de los restos ictioarqueológicos, sino que además fue relevada en el registro paleodietario humano. Los análisis realizados por Favier Dubois y coautores (2009), mostraron dietas predominantemente marinas para el período entre 4000 y 2100 años AP. La señal paleodietaria más temprana evidencia una fuerte focalización en los recursos marinos coincidentemente con una temperatura y productividad marina relativamente elevada. Luego, posibles cambios en la temperatura, acoplados o no con cambios en la morfología costera, pudieron haber impactado en la disponibilidad/ distribución de los recursos y resultar en cambios en las estrategias de explotación de los mismos y en su importancia para la subsistencia (Favier Dubois et al., 2009:993).

Este mismo patrón se refleja desde el registro ictioarqueológico aunque la disminución en la frecuencia y en la abundancia empieza a registrarse desde los 3000 años radiocarbónicos AP y se vuelve mucho más marcada luego de los 1500 años AP en concordancia con el aumento en la señal continental registrado en las paleodieta (Favier Dubois et al., 2009). La restante evidencia zooarqueológica recuperada muestra que además de los recursos marinos previamente explotados, se incorporaron otros de origen continental -algunos de muy alto ranking- como el guanaco y el choique (Marani, 2014); y los recursos vegetales (Borella et al., 2011).

Esto mismo se observa al comparar los índices de abundancia de los principales recursos (Figura 10.18). La tendencia decreciente para el índice de peces desde momentos tempranos a tardíos es acompañada por un paulatino aumento de la señal de mamíferos y aves, que adquiere su valor más alto en el bloque cronológico tardío (Marani, 2014). Sin embargo, como se observa en la Figura 10.19, los peces constituyen una categoría predominante a lo largo de toda la secuencia. Por supuesto, y como ya fue mencionado previamente estas tendencias -especialmente la nula representación de otros taxones en momentos tempranos-, pueden estar siendo fuertemente afectadas por factores tafonómicos, como ser la dificultad que implica la preservación ósea en contextos superficiales. Sin embargo, los escasos loci subsuperficiales detectados hasta el momento están mostrando una tendencia semejante, donde únicamente se encuentran representados los peces. La detección y excavación de nuevos depósitos tempranos podrá permitir una evaluación más certera de estas tendencias.

El registro pesquero recuperado para los momentos tardíos (que incluye restos de peces, pesas líticas y pequeñas bolas carbonáticas), muestra una creciente diversidad de especies explotadas que incluyen mayoritariamente especies pequeñas y de bajo rendimiento energético. Sin embargo, hay que considerar que los peces pequeños presentan una serie de ventajas en términos logísticos y de procesamiento para los grupos humanos ya que pueden ser consumidos enteros, sin necesidad de eliminar los huesos o las víceras, lo que además de una reducción en el tiempo de procesamiento, resulta en ventajas nutricionales aportando mayor cantidad de vitaminas, minerales y calorías (Lindstrom, 1996). Muchas de las especies recuperadas en los conjuntos tardíos en la actualidad presentan un patrón de conducta estacional y sólo se acercan a las áreas costeras en determinados momentos del año. La diversidad de especies explotadas en esta cronología permitiría sostener el desarrollo de prácticas pesqueras a lo largo del año, siendo que se registraron especies típicas de los meses cálidos, como por ejemplo corvina rubia, sargo y lucerna y otras típicas de meses fríos como pejerreyes y róbals. En suma, la señal pesquera tardía sugeriría estrategias de pesca más selectivas e individuales que las documentadas para momentos previos. Sin embargo, pese a que se registra una tendencia de diversificación en la explotación de peces también se advierte una notable disminución en la intensidad de la señal pesquera sobre todo para el Holoceno tardío final (Figura 10.19).

En conjunto, estas evidencias pueden ser evaluadas en el marco de un proceso de diversificación en la dieta, como ya fuera propuesto por Favier Dubois y coautores (2009). Estos autores consideraron que esta situación podría acompañar un aumento demográfico en la costa norte del GSM, llevando a una ocupación efectiva de este litoral costero (sensu Borrero 1989-90) y dando lugar a la saturación de espacios especialmente favorables durante el Holoceno tardío final, en el marco de un deterioro ambiental regional durante el Periodo Cálido Medieval (Favier Dubois et al., 2009:994). Estos planteos, se corresponden con la información cronológica (Favier Dubois, 2013), en la que se observa un pico de frecuencias para el Holoceno tardío final. Además, para este periodo, se registró una gran diversidad artefactual que incluye tecnología ósea (Borella y Buc, 2009), alta frecuencia de cerámicas (Favier Dubois et al., 2008, Borges Vaz, 2013), a lo que se suma el gran número de artefactos de molienda (Orlando, 2009). Todos
estos parecen ser indicadores de movilidad reducida, enmarcado dentro de una estrategia “processor” en términos de Bettinger y Baumhoff (1982) tal como había sido propuesto por Favier Dubois et al. (2009).

En suma, los datos y resultados discutidos en este capítulo permite contrastar positivamente la hipótesis II que plantea que “Las actividades de pesca se habrían desarrollado a partir de estrategias diferentes en los lapsos 6000-4000 AP, 3000 y 2000-800 AP, en concordancia con los cambios ambientales y culturales detectados en estudios previos.” Las expectativas arqueológicas para esta hipótesis, desarrolladas en el Capítulo 3, quedan comprobadas por los análisis y resultados obtenidos en esta investigación. El registro pesquero en la costa rionegrina muestra variaciones cronológicas que pueden vincularse con cambios ambientales y culturales acaecidos en el área a lo largo del tiempo. Se determinó para momentos iniciales el uso de técnicas de pesca masivas focalizadas en unas pocas especies de alto valor energético, lo que contrasta con el desarrollo de estrategias más selectivas e individuales en tiempos tardíos. Conjuntamente para estos momentos se registró la aparición de nuevas tecnologías, como por ejemplo las pequeñas bolas carbonáticas que corresponderían a pesos de línea, lo que además es análogo al hallazgo de un anzuelo de madera tardio en la costa norte del Chubut (Gómez Otero, 1996).
CONSIDERACIONES FINALES

11.1 Introducción

Nuestro principal objetivo fue estudiar el registro pesquero recuperado en las distintas localidades arqueológicas de la costa rionegrina, haciendo foco en su variabilidad espacial y temporal. En vistas a ello se adoptó una perspectiva integradora que vinculó el registro ictioarqueológico con las tecnologías de pesca y los ambientes de captura, lo que permitió discutir las estrategias de pesca y sus implicaciones, teniendo siempre en consideración las cuestiones formacionales de los conjuntos. De este modo, se pudo caracterizar las prácticas pesqueras en diferentes ambientes costeros y determinar las principales variaciones a lo largo de 6000 años de ocupación en el área en vinculación con los cambios ambientales y sociales ocurridos durante este periodo. A continuación, se resumen los principales resultados obtenidos en este trabajo, explorando las principales dimensiones de la Arqueología de la Pesca en la costa rionegrina.

11.2 Arqueología de la pesca en la costa rionegrina

Aquí se presentan los puntos que se consideran más destacados de la investigación desarrollada. Se sintetizan las principales dimensiones que el registro pesquero permitió evaluar y discutir en la costa rionegrina.

En primer lugar se pudo comprobar que los peces cumplieron un papel destacado en la subsistencia de los grupos humanos que ocuparon el área durante los últimos 6000 años radiocarbónicos AP. Se constató el uso sistemático que tuvieron estos recursos tanto a nivel espacial (en casi toda la extensión de la costa rionegrina) como a nivel temporal (a lo largo de toda la secuencia de ocupación del área desde el Holoceno medio hasta el Holoceno tardío final). Este panorama contrasta con la señal pesquera relativamente débil observada en otros sectores de la costa atlántica bonaerense y patagónica, que además de ser espacialmente fragmentaria y discontinua, se circunscribe casi exclusivamente al Holoceno tardío (Gómez Otero et al., 2013a; Stoessel, 2011, 2012; Shovoda y Gómez Otero, 2014). Asimismo, se contrapone a la imagen que dejaron los relatos históricos de cronistas en la región norpatagónica, en la que la costa había sido prácticamente abandonada, donde los peces no sólo eran poco consumidos por los grupos cazadores-recolectores sino que además eran prácticamente despreciados (ver Capítulo 3).

No obstante, como segundo punto de importancia los estudios llevados adelante en esta investigación mostraron que las actividades pesqueras no fueron uniformes a lo largo del tiempo y del espacio en la costa del GSM. Pese a que se trata exclusivamente de estrategias de pesca costeras, es decir desarrolladas desde la faja litoral y que en ningún caso implicaron el uso de tecnologías marinas (p. e. embarcaciones), los resultados de este trabajo mostraron variaciones en la
magnitud y diversidad de la señal pesquera tanto a nivel espacial como temporal, lo que implica trayectorias desiguales en el uso de los peces.

A nivel espacial se observaron variaciones marcadas en la envergadura del registro ictioarqueológico en el tramo norte y oeste del GSM, en concordancia con las diferencias ya detectadas para la señal arqueológica en general (Borella et al., 2006; Favier Dubois y Borella, 2011; Manzi et al., 2011). La costa norte del Golfo presenta una abrumadora señal pesquera desde el Holoceno medio hasta el Holoceno tardío final. Las primeras ocupaciones en el área se encuentran directamente vinculadas a la captura masiva de peces, principalmente corvinas, sargos y en menor medida meros. En cambio, a partir de los 3000 años radiocarbónicos AP se detecta un incremento en la diversidad de especies explotadas, pero una reducción en la biomasa íctica consumida. Adicionalmente aumenta de forma gradual la señal arqueofaunística de otros recursos, como los mamíferos marinos, las aves, los guanacos y otros pequeños mamíferos (Borella et al., 2011; Marani, 2014), lo que también se observó a partir de las paleodietas (Favier Duobios et al., 2009).

La costa oeste en cambio, presenta una señal ictioarqueológica más moderada respecto a la norte, con cierta similitud a lo registrado en otras áreas litorales de Patagonia continental (Gómez Otero, 2007; Gómez Otero et al., 2013; Moreno et al., 2011, entre otros), en donde los peces aparecen representados pero no con la magnitud antes descripta. La diversidad de especies explotadas en este tramo litoral sugiere la utilización de la plataforma rocosa de abrasión como el ambiente predilecto para la pesca. Allí se podrían haber desarrollado técnicas de captura más selectivas (e.g. líneas de pesca, arponeo, o incluso recolección manual, como fue recopilado en múltiples relatos etnográficos a lo largo del mundo –Bridges, [1948] 2000; Lourandos, 1997, Leach, 2006, entre otros-) aunque hasta el momento no se recuperaron evidencias tecnológicas que puedan sustentar fehacientemente dichas prácticas. Sin embargo, esta clase de técnicas serían coherentes con la diversidad y los perfiles de presas recuperados en los conjuntos allí recuperados. Como ya fue mencionado anteriormente, el registro pesquero recuperado en esta costa se agrupa cronológicamente en torno a los 3000 años AP, lo que contrasta con la extensión temporal documentada en la costa norte. La excepción hasta la fecha es el locus Arroyo Verde 1, muestreado por Gómez Otero, fechado en ca. 7200 años AP en donde se recuperaron al menos 22 ejemplares de mero (Acanthistius patachonicus) de gran tamaño y uno de Turco (Pinguipes brasilianis) (Gómez Otero 2007:135). Esto se corresponde con los perfiles de presas recuperados en los conjuntos tempranos de la costa norte, es decir baja diversidad y alta frecuencia de restos.

Como tercer punto esta investigación permitió postular el desarrollo de al menos dos estrategias pesqueras diferentes en el área, una más masiva pero dirigida a unos pocos recursos pesqueros y otra más selectiva enfocada en un gama más amplia de especies ícticas. Estas dos estrategias pesqueras implican el aprovechamiento diferencial de micro-ambientes costeros. Mientras que la pesca masiva se habría desarrollado en los entrantes marinos (e.g. bahías, caletas, ensenadas, etc.) de fondos blandos, vegetación halófila y baja energía del agua, las pesca más selectiva se habría llevado adelante en las extensas plataformas rocosas de abrasión aprovechando los canales, pozas y piletones de marea en donde se encuentran asociados los peces de los arrecifes. El desarrollo de ambas técnicas de pesca implica un amplio conocimiento de la variabilidad en los
ambientes costeros del área y en la abundancia, distribución y frecuencia de los potenciales recursos. Asimismo, el desarrollo pesquero en el área requirió la confección de artefactos específicos para esta actividad, que se confirmó con la presencia de pesas líticas tanto de redes como de líneas. El registro de esta clase de artefactos y otros como por ejemplo los denticulados, que fueron asociados al procesamiento primario de los peces (Favier Dubois y Scartascini, 2012), serían un indicador más de la sistematicidad de la actividad pesquera en el área.

La pesca masiva con redes que se practicó desde el Holoceno medio en la costa norte del GSM implica la primera evidencia de este tipo de estrategias pesqueras para todo el litoral patagónico argentino. Buena parte de la evidencia que sustenta esta práctica (otolitos de corvina y pesas líticas) proviene de contextos superficiales (ver discusión sobre este punto en el Capítulo 9). Desde dos décadas atrás los sitios superficiales son considerados como una parte esencial e indispensable del registro arqueológico debido a que informan acerca de las distintas alternativas del uso y la ocupación humana del espacio (Borrero 1995: 162; entre otros). En tal sentido, los conjuntos pesqueros superficiales presentados y discutidos en este libro no hacen más que ofrecer otro ejemplo acerca del valor de esta clase de evidencia y del inmenso aporte que pueden ofrecer a las discusiones arqueológicas (acompañados de evaluaciones cuidadosas acerca de su historia de formación).

El cuarto punto implica destacar la importancia que el registro pesquero tiene en la evaluación de los cambios ambientales en el pasado y las perspectivas para generar información que pueda ser utilizada en estudios actuales. En este sentido se quiere señalar la recurrencia en el uso de ciertos ambientes de la costa norte del Golfo por más de 6000 años, como son las localidades Bahía Creek, Bajo de la Quinta y Bahía San Antonio. Lo interesante es que los pescadores locales entrevistados en el marco del trabajo doctoral (ver Scartascini y Volpedo, 2013) afirmaron que estas mismas localidades son en la actualidad importantes sitios de pesca para los pescadores artesanales. Sin embargo, como destacaron todos los pescadores artesanales y se desprende de los registros pesqueros históricos (Rojo y Silvosa, 1969; González, 1994), hubo variaciones en la distribución y abundancia de algunas especies ictícas costeras. Tal vez el caso más claro y además el más estudiado es el de *M. furnieri* que en la actualidad se encuentra por fuera del área de distribución del GSM (Cousseau y Perrota, 2004), lo que contrasta con el abundante registro de esta especie en los conjuntos arqueológicos del área. Estas variaciones permitieron plantear cambios cronológicos en la distribución y disponibilidad de la corvina (Scartascini y Volpedo, 2013) que en la actualidad es un recurso de gran importancia ecológica y comercial (Cousseau y Perrota, 2004), -los que tienen implicaciones directas en aspectos vinculados a la biología de la conservación de esta especie-. La investigación zooarqueológica nos provee una perspectiva adecuada para estudiar la dinámica biogeográfica de diferentes especies en una escala de tiempo larga (Grayson, 2000). Podría decirse que constituye un puente entre el registro paleontológico de gran profundidad temporal y la biología actual (Lyman, 2010, 2011).

El quinto y último punto que se quiere destacar hace referencia a algunos de los conceptos discutidos en el Capítulo 1. Específicamente aquí se pretende retomar las implicaciones que la actividad pesquera sistemática, como la documentada en el GSM, tiene en grupos cazadores recolectores. Como ya fue mencionado al inicio de este trabajo, existen numerosos datos etnográficos en
grupos cazadores recolectores a lo largo del mundo que han sugerido que el consumo sistemático e intensivo de recursos marinos (peces especialmente) sería el puntapié inicial para el desarrollo de grupos sedentarios con conductas “complejas” (ver Capítulo 1.4). Sin embargo, esta generalización podría estar mostrando una posible trayectoria de ciertas sociedades entre muchas otras. De hecho, el registro arqueológico en la costa rionegrina no muestra evidencias compatibles con prácticas complejas o modos de vida sedentarios pese al uso intensivo y sostenido de peces (Favier Dubois et al., 2009), lo que además se corresponde con las observaciones en otras áreas de Patagonia (e.g. Canal Beagle –ver Orquera y Piana, 1999 a y b; Zangrando, 2009b). Como ya fuera considerado por Borrero (2011) las ocupaciones de la costa rionegrina plantean un desajuste con los modelos etnográficos de otras áreas del mundo (e.g. Yesner, 1980; Binford, 2001). No obstante, estas evaluaciones escapan al alcance y a los objetivos propuestos para este trabajo; en el futuro con más investigaciones se podrá evaluar el lugar que ocuparon los recursos marinos en la macro escala patagónica y cómo la particular estructura de recursos de esta área pudo haber condicionando o no la movilidad, la demografía y la organización social.

11.3 Consideraciones finales y perspectivas futuras

En esta investigación mostramos que a partir de la integración del registro ictioarqueológico, el registro tecnológico y la información de los ambientes físicos es posible desarrollar un acercamiento arqueológico para estudiar la pesca como una estrategia particular de subsistencia en grupos cazadores recolectores. Esto permitió establecer algunas tendencias generales acerca de la explotación de peces en el área, lo que evidenció un panorama muy variable tanto a nivel espacial como temporal. Analizada en conjunto, la evidencia ictioarqueológica del área sugiere un marcado conocimiento de los ambientes y recursos pesqueros desde el Holoceno medio por parte de las poblaciones humanas. Esto se evidencia en el desarrollo de técnicas de captura específicas para la explotación de peces, que se adecuaron a las variaciones en los ambientes de pesca y a las características propias de las especies (hábitos, gregarismo, estacionalidad, etc.). Los peces son recursos que tienen múltiples atributos nutricionales para las poblaciones que los consumen y tienen la ventaja de ser un tipo de presa predecible, segura y relativamente fácil de capturar. Sin embargo, es necesario conocimiento y tecnologías adecuadas dado que su explotación sistemática requiere de ajustados mecanismos tecnológicos y sociales (Acheson, 1981). En tal sentido, la evidencia del GSM exhibe el desarrollo de un sistema de subsistencia específicamente diseñado para la explotación de peces bajo estrategias altamente planificadas, lo que hasta el momento no tiene paralelos en ninguna otra área de Patagonia continental.

Esta investigación no es concluyente en el abordaje de la arqueología de la pesca en la región de estudio, sino que los resultados obtenidos permiten plantear nuevos interrogantes que serán integrados en trabajos posteriores. En el futuro se evaluarán las variaciones temporales en la diversidad de especies ícticas explotadas y el lugar que las modificaciones en los ambientes costeros pudieron haber tenido en la oferta de recursos ícticos. Esto permitirá continuar caracterizando las pesquerías prehistóricas, lo que puede generar valiosa información respecto a aspectos vinculados a la distribución de las especies y a la biología de la conservación. Estos y otros análisis continuarán completando y esclareciendo la problemática de la pesca y la explotación de peces en el área. Finalmente, el alcance de los resultados y las explicaciones generadas en el marco
de este libro podrán ser contrastados y completados en el futuro con la inclusión de nuevos conjuntos a lo largo de la costa del GSM.
Sección IV
<table>
<thead>
<tr>
<th>Localidad</th>
<th>Sector/Loci</th>
<th>Contexto</th>
<th>N Peces</th>
<th>N Pasas</th>
<th>Latitud</th>
<th>Longitud</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR</td>
<td>BR 7</td>
<td>Sup</td>
<td>8</td>
<td></td>
<td>-41.14633338</td>
<td>-63.34769444</td>
</tr>
<tr>
<td></td>
<td>BR 2</td>
<td>Sup</td>
<td>2</td>
<td></td>
<td>-41.15022222</td>
<td>-63.37955556</td>
</tr>
<tr>
<td></td>
<td>BR 1</td>
<td>Sup</td>
<td>3</td>
<td></td>
<td>-41.1495597</td>
<td>-63.326461</td>
</tr>
<tr>
<td></td>
<td>PALEO S.1</td>
<td>Sondeo</td>
<td>47</td>
<td></td>
<td>-41.07572222</td>
<td>-63.9455</td>
</tr>
<tr>
<td></td>
<td>Ba Creek TF1</td>
<td>Sup</td>
<td>45</td>
<td></td>
<td>-41.05691667</td>
<td>-63.96388889</td>
</tr>
<tr>
<td></td>
<td>Ba Creek TF Paleo</td>
<td>Sup</td>
<td>32</td>
<td></td>
<td>-41.05375</td>
<td>-63.96638889</td>
</tr>
<tr>
<td></td>
<td>Ba Creek TF Paleo 1</td>
<td>Sup</td>
<td>15</td>
<td></td>
<td>-41.05347222</td>
<td>-63.96233333</td>
</tr>
<tr>
<td></td>
<td>Ba Creek TF 2</td>
<td>Sup</td>
<td>5</td>
<td></td>
<td>-41.05702778</td>
<td>-63.96322222</td>
</tr>
<tr>
<td></td>
<td>Ba Creek Pesas Paleo</td>
<td>Sup</td>
<td>61</td>
<td></td>
<td>-41.06130556</td>
<td>-63.96877778</td>
</tr>
<tr>
<td></td>
<td>Ba Creek Conchero Paleo</td>
<td>Sup</td>
<td>20</td>
<td></td>
<td>-41.06664444</td>
<td>-63.96761111</td>
</tr>
<tr>
<td></td>
<td>Paesani SUP</td>
<td>Sup</td>
<td>7</td>
<td></td>
<td>-41.07625</td>
<td>-63.94050556</td>
</tr>
<tr>
<td></td>
<td>Paesani S.2</td>
<td>Sondeo</td>
<td>8</td>
<td></td>
<td>-41.07572222</td>
<td>-63.9455</td>
</tr>
<tr>
<td></td>
<td>Paesani S.3</td>
<td>Sondeo</td>
<td>537</td>
<td></td>
<td>-41.07575</td>
<td>-63.9465</td>
</tr>
<tr>
<td></td>
<td>Paesani S.4</td>
<td>Sondeo</td>
<td>26</td>
<td></td>
<td>-41.07583333</td>
<td>-63.94536111</td>
</tr>
<tr>
<td></td>
<td>Paesani S.5</td>
<td>Sondeo</td>
<td>853</td>
<td></td>
<td>-41.07594444</td>
<td>-63.61233333</td>
</tr>
<tr>
<td></td>
<td>Paesani S.6</td>
<td>Sondeo</td>
<td>6</td>
<td></td>
<td>-41.07594444</td>
<td>-63.61233333</td>
</tr>
<tr>
<td></td>
<td>Marca 421</td>
<td>Sup</td>
<td>30</td>
<td></td>
<td>-41.01893333</td>
<td>-64.06657222</td>
</tr>
<tr>
<td></td>
<td>Sup. 2x5</td>
<td>Sup</td>
<td>14</td>
<td></td>
<td>-40.99411111</td>
<td>-64.07061111</td>
</tr>
<tr>
<td></td>
<td>Sup. 2x3</td>
<td>Sup</td>
<td>14</td>
<td></td>
<td>-40.97347222</td>
<td>-64.08344444</td>
</tr>
<tr>
<td></td>
<td>Sec 3. Conch 80</td>
<td>Sondeo</td>
<td>848</td>
<td></td>
<td>-40.93858</td>
<td>-64.34235</td>
</tr>
<tr>
<td></td>
<td>LND GPS 142</td>
<td>Sondeo</td>
<td>218</td>
<td></td>
<td>-40.93901667</td>
<td>-64.33978333</td>
</tr>
<tr>
<td></td>
<td>LNE GPS 125</td>
<td>Sondeo</td>
<td>231</td>
<td></td>
<td>-40.93999</td>
<td>-64.33557</td>
</tr>
<tr>
<td></td>
<td>LNE GPS 126</td>
<td>Sondeo</td>
<td>493</td>
<td></td>
<td>-40.93995</td>
<td>-64.33565</td>
</tr>
<tr>
<td></td>
<td>Sec 1 S.2</td>
<td>Sondeo</td>
<td>923</td>
<td></td>
<td>-40.94005556</td>
<td>-64.34916667</td>
</tr>
<tr>
<td></td>
<td>Sec. Otollitos</td>
<td>Sup</td>
<td>71</td>
<td></td>
<td>-40.94683333</td>
<td>-64.32966667</td>
</tr>
<tr>
<td></td>
<td>Terraza Fondo (bolsa 1)</td>
<td>Sup</td>
<td>14</td>
<td></td>
<td>-40.93801667</td>
<td>-64.32983333</td>
</tr>
<tr>
<td></td>
<td>Terraza Fondo (bolsa 2)</td>
<td>Sup</td>
<td>12</td>
<td></td>
<td>-40.9376</td>
<td>-64.33493333</td>
</tr>
<tr>
<td></td>
<td>Terraza Fondo (bolsa 3)</td>
<td>Sup</td>
<td>6</td>
<td></td>
<td>-40.93813333</td>
<td>-64.32991667</td>
</tr>
<tr>
<td></td>
<td>Terraza Fondo (bolsa 4)</td>
<td>Sup</td>
<td>37</td>
<td></td>
<td>-40.94622222</td>
<td>-64.31866667</td>
</tr>
<tr>
<td></td>
<td>Terraza Fondo (bolsa 5)</td>
<td>Sup</td>
<td>6</td>
<td></td>
<td>-40.94852778</td>
<td>-64.31988889</td>
</tr>
<tr>
<td></td>
<td>Terraza Fondo 3</td>
<td>Sup</td>
<td>7</td>
<td></td>
<td>-40.94711111</td>
<td>-64.31952778</td>
</tr>
<tr>
<td></td>
<td>Terraza Fondo Fondo</td>
<td>Sup</td>
<td>8</td>
<td></td>
<td>-40.94602778</td>
<td>-64.31731389</td>
</tr>
<tr>
<td></td>
<td>Terraza Holocena</td>
<td>Sup</td>
<td>87</td>
<td></td>
<td>-40.94186111</td>
<td>-64.33869167</td>
</tr>
<tr>
<td></td>
<td>Terraza Taraconia (bolsa 1)</td>
<td>Sup</td>
<td>21</td>
<td></td>
<td>-40.94308333</td>
<td>-64.33338111</td>
</tr>
<tr>
<td></td>
<td>Terraza Taraconia (bolsa 2)</td>
<td>Sup</td>
<td>5</td>
<td></td>
<td>-40.94375</td>
<td>-64.33194444</td>
</tr>
<tr>
<td></td>
<td>TF M1T</td>
<td>Sup</td>
<td>38</td>
<td></td>
<td>-40.94136111</td>
<td>-64.32591667</td>
</tr>
<tr>
<td></td>
<td>Terraza del Conchero</td>
<td>Sup</td>
<td>18</td>
<td></td>
<td>-40.9362</td>
<td>-64.33311667</td>
</tr>
<tr>
<td></td>
<td>Terraza alta</td>
<td>Sup</td>
<td>31</td>
<td></td>
<td>-40.9436</td>
<td>-64.32666</td>
</tr>
<tr>
<td></td>
<td>T 101</td>
<td>Sup</td>
<td>7</td>
<td></td>
<td>-40.94622222</td>
<td>-64.32516667</td>
</tr>
<tr>
<td></td>
<td>Lentrante ESTE</td>
<td>Sup</td>
<td>16</td>
<td></td>
<td>-40.94583333</td>
<td>-64.32746667</td>
</tr>
<tr>
<td></td>
<td>Lentrante OESTE</td>
<td>Sup</td>
<td>9</td>
<td></td>
<td>-40.94353333</td>
<td>-64.32686667</td>
</tr>
<tr>
<td></td>
<td>COSTA TERRAZA</td>
<td>Sup</td>
<td>12</td>
<td></td>
<td>-40.95011667</td>
<td>-64.32673333</td>
</tr>
<tr>
<td></td>
<td>La noria este</td>
<td>Sup</td>
<td>11</td>
<td></td>
<td>-40.9398</td>
<td>-64.33663333</td>
</tr>
</tbody>
</table>

continúa
<table>
<thead>
<tr>
<th>Localidad</th>
<th>Forma</th>
<th>Sup</th>
<th>C</th>
<th>Urea</th>
<th>Urea</th>
<th>Urea</th>
</tr>
</thead>
<tbody>
<tr>
<td>La mona oeste</td>
<td>Sup</td>
<td>23</td>
<td>-40.9398</td>
<td>-64.33663333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sec 1</td>
<td>Sup</td>
<td>3</td>
<td>-40.93736667</td>
<td>-64.34283333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sec 2</td>
<td>Sup</td>
<td>1</td>
<td>-40.93777778</td>
<td>-64.34130596</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sec 3</td>
<td>Sup</td>
<td>5</td>
<td>-40.9389</td>
<td>-64.34293333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA PES</td>
<td>Sondeo</td>
<td>52</td>
<td>-40.93175833</td>
<td>-64.38523889</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuadricula 2</td>
<td>Sup</td>
<td>12</td>
<td>-40.93175833</td>
<td>-64.38523889</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td>BF6 S1</td>
<td>Sondeo</td>
<td>11</td>
<td>-40.86384167</td>
<td>-64.53897778</td>
<td></td>
</tr>
<tr>
<td>BF6 Sec 2</td>
<td>Sup</td>
<td>6</td>
<td>-40.86285556</td>
<td>-64.53828056</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF10 Terraza</td>
<td>Sup</td>
<td>3</td>
<td>-40.86627778</td>
<td>-64.52755556</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF 11 S1</td>
<td>Sondeo</td>
<td>15</td>
<td>-40.86248889</td>
<td>-64.93386944</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF 7 S1</td>
<td>Sondeo</td>
<td>5</td>
<td>-40.87322222</td>
<td>-64.51991667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF110 S1</td>
<td>Sondeo</td>
<td>50</td>
<td>-40.83845833</td>
<td>-64.851025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF 6 (sec 2) S2</td>
<td>Sondeo</td>
<td>3</td>
<td>-40.91203333</td>
<td>-64.40899772</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF 6 (sec 2) S4</td>
<td>Sondeo</td>
<td>2</td>
<td>-40.821425</td>
<td>-64.71842778</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSM</td>
<td>Sondeo</td>
<td>50</td>
<td>-40.86285556</td>
<td>-64.53828056</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sup 10x15</td>
<td>Sup</td>
<td>12</td>
<td>-40.82221667</td>
<td>-64.71856667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otolitos Sup 2x2</td>
<td>Sup</td>
<td>105</td>
<td>-40.82138889</td>
<td>-64.72258333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSA</td>
<td>SAO PC S1</td>
<td>Sondeo</td>
<td>2330</td>
<td>-40.73559</td>
<td>-64.95801</td>
<td></td>
</tr>
<tr>
<td>SAO PC S2</td>
<td>Sondeo</td>
<td>1210</td>
<td>-40.73505</td>
<td>-64.9598889</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAO No K</td>
<td>Sup</td>
<td>26</td>
<td>-40.7437</td>
<td>-64.97370833</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAO ALPAT ini</td>
<td>Sup</td>
<td>16</td>
<td>4</td>
<td>-40.74401667</td>
<td>-64.9734</td>
<td></td>
</tr>
<tr>
<td>SAO PC</td>
<td>Sup</td>
<td>50</td>
<td>-40.73505</td>
<td>-64.9599889</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAO PP</td>
<td>Sup</td>
<td>79</td>
<td>33</td>
<td>-40.74288333</td>
<td>-64.97275</td>
<td></td>
</tr>
<tr>
<td>SAO PP M 1</td>
<td>Sup</td>
<td>31</td>
<td>-40.74288889</td>
<td>-64.97277778</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAO Duna vivaro</td>
<td>Sup</td>
<td>36</td>
<td>-40.74038889</td>
<td>-64.96619444</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SV Histórico S.2</td>
<td>Sondeo</td>
<td>138</td>
<td>-40.81527778</td>
<td>-64.76994444</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SV Histórico S.3</td>
<td>Sondeo</td>
<td>87</td>
<td>-40.81525</td>
<td>-64.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SV Casero S1</td>
<td>Sondeo</td>
<td>2001</td>
<td>-40.81505556</td>
<td>-64.74891667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SV Sec 1</td>
<td>Sup</td>
<td>47</td>
<td>-40.81004722</td>
<td>-64.76814444</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SV Sec 2</td>
<td>Sup</td>
<td>19</td>
<td>-40.815225</td>
<td>-64.76647778</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRUTAS SUR</td>
<td>Sup 2x2</td>
<td>Sup</td>
<td>4</td>
<td>-40.82253889</td>
<td>-65.10302778</td>
<td></td>
</tr>
<tr>
<td>C. PUMA</td>
<td>Sondeo</td>
<td>63</td>
<td>-41.42622222</td>
<td>-65.0669</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sup 5x5</td>
<td>Sup</td>
<td>2</td>
<td>-41.42663889</td>
<td>-65.06725</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. PORFIDO</td>
<td>Camino</td>
<td>Sup</td>
<td>6</td>
<td>-41.77736111</td>
<td>-65.01291667</td>
<td></td>
</tr>
<tr>
<td>PO</td>
<td>SEC 2 S1</td>
<td>Sondeo</td>
<td>685</td>
<td>-41.83208333</td>
<td>-65.02508333</td>
<td></td>
</tr>
<tr>
<td>SEC 2 S2</td>
<td>Sondeo</td>
<td>402</td>
<td>-41.83191667</td>
<td>-65.02525</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sec 2 Sup</td>
<td>Sup</td>
<td>2</td>
<td>-41.83208333</td>
<td>-65.02508333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sec 3 S1</td>
<td>Sondeo</td>
<td>18</td>
<td>-41.83027778</td>
<td>-65.03577778</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sec 3 S2</td>
<td>Sondeo</td>
<td>40</td>
<td>-41.82993333</td>
<td>-65.03941667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sec 3 Sup</td>
<td>Sup</td>
<td>37</td>
<td>-41.83026389</td>
<td>-65.03750833</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sur Sup</td>
<td>Sup</td>
<td>1</td>
<td>-41.84861111</td>
<td>-65.05072222</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AV</td>
<td>Locus 1</td>
<td>Sup</td>
<td>488</td>
<td>2</td>
<td>-41.9001</td>
<td>-65.06422778</td>
</tr>
</tbody>
</table>

Tabla A.1. Muestra total del registro pesquero en la costa rionegrina.
<table>
<thead>
<tr>
<th>Localidad</th>
<th>Sector</th>
<th>Largo</th>
<th>Ancho</th>
<th>Espesor</th>
<th>Materia Prima</th>
<th>Peso</th>
<th>Tecnología</th>
<th>Eje</th>
</tr>
</thead>
<tbody>
<tr>
<td>La Noria</td>
<td>62</td>
<td>47</td>
<td>87</td>
<td>VA</td>
<td>125.1</td>
<td>Pe unifacial</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>La Noria</td>
<td>93</td>
<td>51</td>
<td>21</td>
<td>VA</td>
<td>137.1</td>
<td>Pe unifacial</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>La Noria</td>
<td>89</td>
<td>53</td>
<td>12</td>
<td>VA</td>
<td>75</td>
<td>Pe unifacial</td>
<td>trans</td>
<td></td>
</tr>
<tr>
<td>La Noria</td>
<td>64</td>
<td>52</td>
<td>23</td>
<td>VA</td>
<td>100.9</td>
<td>Pe unifacial</td>
<td>trans</td>
<td></td>
</tr>
<tr>
<td>La Noria</td>
<td>78</td>
<td>64</td>
<td>24</td>
<td>VA</td>
<td>135.4</td>
<td>Pe unifacial</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>La Noria</td>
<td>52</td>
<td>49</td>
<td>21</td>
<td>VA</td>
<td>82.8</td>
<td>Pl unifacial</td>
<td>trans</td>
<td></td>
</tr>
<tr>
<td>La Noria</td>
<td>66</td>
<td>40</td>
<td>20</td>
<td>VIB</td>
<td>82.5</td>
<td>Pe unifacial</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>La Noria</td>
<td>120</td>
<td>62</td>
<td>23</td>
<td>Sedí</td>
<td>245</td>
<td>Pl y A</td>
<td>trans</td>
<td></td>
</tr>
<tr>
<td>La Noria</td>
<td>76</td>
<td>54</td>
<td>35</td>
<td>VA</td>
<td>208</td>
<td>Pl bifacial</td>
<td>trans</td>
<td></td>
</tr>
<tr>
<td>Sec. 1</td>
<td>98.5</td>
<td>44.6</td>
<td>19.8</td>
<td>VIB</td>
<td>125.1</td>
<td>Pe unifacial</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>Sec. 1</td>
<td>71.07</td>
<td>58</td>
<td>27.64</td>
<td>cuarzo</td>
<td>169.7</td>
<td>Pe unifacial</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>Sec. 1</td>
<td>48</td>
<td>49</td>
<td>41</td>
<td>VIB</td>
<td>124</td>
<td>Pl y A</td>
<td>trans</td>
<td></td>
</tr>
<tr>
<td>Sec. 2</td>
<td>63.68</td>
<td>59.24</td>
<td>18.67</td>
<td>VA</td>
<td>112.8</td>
<td>Pe unifacial</td>
<td>trans</td>
<td></td>
</tr>
<tr>
<td>Sec. 3</td>
<td>60.18</td>
<td>46.42</td>
<td>43.2</td>
<td>VIB</td>
<td>161.1</td>
<td>Pl unifacial</td>
<td>trans</td>
<td></td>
</tr>
<tr>
<td>Sec. 3</td>
<td>69.96</td>
<td>52.31</td>
<td>31.76</td>
<td>VA</td>
<td>160.3</td>
<td>Pl bifacial</td>
<td>trans</td>
<td></td>
</tr>
<tr>
<td>Sec. 3</td>
<td>70.57</td>
<td>50.92</td>
<td>17.46</td>
<td>VIB</td>
<td>99</td>
<td>Pl bifacial</td>
<td>trans</td>
<td></td>
</tr>
<tr>
<td>Sec. 3</td>
<td>70.88</td>
<td>61.08</td>
<td>26.32</td>
<td>VIB</td>
<td>157.8</td>
<td>Pl bifacial</td>
<td>2 ejes</td>
<td></td>
</tr>
<tr>
<td>Sec. 3</td>
<td>84.61</td>
<td>52.89</td>
<td>15.92</td>
<td>VA</td>
<td>106.6</td>
<td>Pe bifacial</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>BQ</td>
<td>54.14</td>
<td>46.38</td>
<td>40.56</td>
<td>Sedí</td>
<td>143.8</td>
<td>Pl y A</td>
<td>trans</td>
<td></td>
</tr>
<tr>
<td>Terraza</td>
<td>58.32</td>
<td>28.48</td>
<td>13.29</td>
<td>VIB</td>
<td>32.9</td>
<td>Pe unifacial</td>
<td>trans</td>
<td></td>
</tr>
<tr>
<td>Terraza</td>
<td>45.31</td>
<td>38.28</td>
<td>12.64</td>
<td>VIB</td>
<td>30.3</td>
<td>Pe unifacial</td>
<td>trans</td>
<td></td>
</tr>
<tr>
<td>Terraza</td>
<td>117.5</td>
<td>57.14</td>
<td>30.54</td>
<td>VIB</td>
<td>301</td>
<td>Pe bifacial</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>Terraza</td>
<td>78.16</td>
<td>46.46</td>
<td>23.48</td>
<td>VA</td>
<td>129.7</td>
<td>Pe bifacial</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>Terraza</td>
<td>79.04</td>
<td>61.2</td>
<td>27.82</td>
<td>VA</td>
<td>201.5</td>
<td>Pe unifacial</td>
<td>trans</td>
<td></td>
</tr>
<tr>
<td>Terraza</td>
<td>77</td>
<td>60</td>
<td>37</td>
<td>VA</td>
<td>237</td>
<td>Pl bifacial</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>Terraza</td>
<td>75</td>
<td>62</td>
<td>26</td>
<td>VA</td>
<td>184.5</td>
<td>Pl y A</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>Terraza</td>
<td>77</td>
<td>44</td>
<td>28</td>
<td>VA</td>
<td>158.8</td>
<td>Pe bifacial</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>Terraza</td>
<td>66.6</td>
<td>50</td>
<td>25</td>
<td>VIB</td>
<td>136.9</td>
<td>Pe bifacial</td>
<td>trans</td>
<td></td>
</tr>
<tr>
<td>Terraza</td>
<td>71</td>
<td>55</td>
<td>26</td>
<td>Sedí</td>
<td>122.4</td>
<td>Pl unifacial</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>Terraza</td>
<td>70</td>
<td>54</td>
<td>33</td>
<td>Sedí</td>
<td>175.1</td>
<td>Pe bifacial</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>Terraza</td>
<td>81</td>
<td>58</td>
<td>15</td>
<td>VA</td>
<td>99.7</td>
<td>Pe unifacial</td>
<td>trans</td>
<td></td>
</tr>
<tr>
<td>Terraza</td>
<td>68</td>
<td>58</td>
<td>15</td>
<td>VA</td>
<td>77.8</td>
<td>Pe unifacial</td>
<td>trans</td>
<td></td>
</tr>
<tr>
<td>Terraza</td>
<td>61.35</td>
<td>51.99</td>
<td>20.33</td>
<td>VA</td>
<td>94.5</td>
<td>Pl bifacial</td>
<td>trans</td>
<td></td>
</tr>
<tr>
<td>Terraza</td>
<td>70.63</td>
<td>59.43</td>
<td>17.23</td>
<td>VIB</td>
<td>101.2</td>
<td>Pl bifacial</td>
<td>trans</td>
<td></td>
</tr>
<tr>
<td>Terraza</td>
<td>63.86</td>
<td>53.81</td>
<td>18.4</td>
<td>VIB</td>
<td>88.9</td>
<td>Pe bifacial</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>Terraza</td>
<td>61.18</td>
<td>50.97</td>
<td>37.12</td>
<td>VA</td>
<td>153</td>
<td>Pe bifacial</td>
<td>trans</td>
<td></td>
</tr>
<tr>
<td>Terraza</td>
<td>76.96</td>
<td>75.04</td>
<td>26.6</td>
<td>VIB</td>
<td>224</td>
<td>Pe bifacial</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>BQ</td>
<td>53</td>
<td>46</td>
<td>13</td>
<td>VIB</td>
<td>39.2</td>
<td>Pe bifacial</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>BF10</td>
<td>57</td>
<td>45</td>
<td>10</td>
<td>VIB</td>
<td>40.9</td>
<td>Pe unifacial</td>
<td>trans</td>
<td></td>
</tr>
<tr>
<td>BF10 T</td>
<td>83</td>
<td>62</td>
<td>32</td>
<td>VIB</td>
<td>226.5</td>
<td>Pe unifacial</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>BF10 T</td>
<td>86</td>
<td>63</td>
<td>40</td>
<td>VA</td>
<td>308</td>
<td>Pe unifacial</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>BF10 T</td>
<td>72</td>
<td>50</td>
<td>25</td>
<td>VIB</td>
<td>132.5</td>
<td>Pe unifacial</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>BF10 T</td>
<td>80.5</td>
<td>58.64</td>
<td>15.97</td>
<td>VA</td>
<td>99.3</td>
<td>Pe bifacial</td>
<td>long</td>
<td></td>
</tr>
</tbody>
</table>

continúa
<table>
<thead>
<tr>
<th>BC</th>
<th>PALEO</th>
<th>66.59</th>
<th>33.67</th>
<th>18.74</th>
<th>VIB</th>
<th>66.4</th>
<th>Pe. bifacial</th>
<th>long</th>
</tr>
</thead>
<tbody>
<tr>
<td>PALEO</td>
<td>75.4</td>
<td>46.66</td>
<td>24.38</td>
<td>VIB</td>
<td>137.6</td>
<td>Pe. bifacial</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>PALEO</td>
<td>74.75</td>
<td>43.55</td>
<td>27.21</td>
<td>VIB</td>
<td>131.2</td>
<td>PyP bifacial</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>PALEO</td>
<td>70.23</td>
<td>46.8</td>
<td>22.57</td>
<td>VIB</td>
<td>104.8</td>
<td>Pe unifacial</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>PALEO</td>
<td>77.55</td>
<td>60.14</td>
<td>22.36</td>
<td>VA</td>
<td>152.3</td>
<td>Pi bifacial</td>
<td>trans</td>
<td></td>
</tr>
<tr>
<td>PALEO</td>
<td>51.17</td>
<td>44.1</td>
<td>12.43</td>
<td>VA</td>
<td>43.9</td>
<td>Pe unifacial</td>
<td>trans</td>
<td></td>
</tr>
<tr>
<td>PALEO</td>
<td>85.48</td>
<td>49.04</td>
<td>30.6</td>
<td>VA</td>
<td>161.2</td>
<td>Pe unifacial</td>
<td>trans</td>
<td></td>
</tr>
<tr>
<td>PALEO</td>
<td>92.21</td>
<td>58.73</td>
<td>37.28</td>
<td>VA</td>
<td>261</td>
<td>Pe. bifacial</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>PALEO</td>
<td>77.76</td>
<td>49</td>
<td>27.1</td>
<td>VA</td>
<td>140.7</td>
<td>Pe. bifacial</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>PALEO</td>
<td>92.4</td>
<td>66.11</td>
<td>21.86</td>
<td>Sedi</td>
<td>174.7</td>
<td>Pi bifacial</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>PALEO</td>
<td>90.15</td>
<td>60.69</td>
<td>34.74</td>
<td>VA</td>
<td>223</td>
<td>Pe. bifacial</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>PALEO</td>
<td>91.7</td>
<td>65.77</td>
<td>24.08</td>
<td>Sedi</td>
<td>225.3</td>
<td>Pi bifacial</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>54</td>
<td>45</td>
<td>12</td>
<td>VIB</td>
<td>41.3</td>
<td>Pe unifacial</td>
<td>trans</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>50</td>
<td>40</td>
<td>19</td>
<td>VIB</td>
<td>39.5</td>
<td>Pe unifacial</td>
<td>trans</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>49</td>
<td>39</td>
<td>13</td>
<td>VIB</td>
<td>36.1</td>
<td>Pe unifacial</td>
<td>trans</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>53</td>
<td>48</td>
<td>10</td>
<td>VA</td>
<td>32.4</td>
<td>PyP bifacial</td>
<td>trans</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>49</td>
<td>39</td>
<td>12</td>
<td>VIB</td>
<td>38.9</td>
<td>Pe unifacial</td>
<td>trans</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>62</td>
<td>48</td>
<td>18</td>
<td>VIB</td>
<td>70.1</td>
<td>Pe unifacial</td>
<td>trans</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>51</td>
<td>49</td>
<td>18</td>
<td>VIB</td>
<td>45.8</td>
<td>Pe unifacial</td>
<td>trans</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>51</td>
<td>35</td>
<td>14</td>
<td>VIB</td>
<td>36.8</td>
<td>Pe unifacial</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>62</td>
<td>48</td>
<td>16</td>
<td>VA</td>
<td>66.5</td>
<td>Pe unifacial</td>
<td>trans</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>55</td>
<td>47</td>
<td>15</td>
<td>VIB</td>
<td>46.1</td>
<td>PyP bifacial</td>
<td>trans</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>82</td>
<td>34</td>
<td>25</td>
<td>VA</td>
<td>159.4</td>
<td>Pe unifacial</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>67</td>
<td>43</td>
<td>13</td>
<td>VIB</td>
<td>61.4</td>
<td>PyP bifacial</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>55</td>
<td>34</td>
<td>18</td>
<td>VIB</td>
<td>50.4</td>
<td>Pe unifacial</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>75</td>
<td>50</td>
<td>13</td>
<td>VIB</td>
<td>75.9</td>
<td>PyP unifacial</td>
<td>trans</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>52</td>
<td>46</td>
<td>9</td>
<td>VIB</td>
<td>34.8</td>
<td>Pi bifacial</td>
<td>trans</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>66</td>
<td>50</td>
<td>26</td>
<td>VIB</td>
<td>119.8</td>
<td>Pe unifacial</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>48</td>
<td>37</td>
<td>15</td>
<td>VIB</td>
<td>46.4</td>
<td>Pe. bifacial</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>49</td>
<td>44</td>
<td>16</td>
<td>VA</td>
<td>51.2</td>
<td>PyP bifacial</td>
<td>trans</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>50</td>
<td>41</td>
<td>14</td>
<td>VIB</td>
<td>41.3</td>
<td>Pe unifacial</td>
<td>trans</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>43</td>
<td>36</td>
<td>12</td>
<td>VIB</td>
<td>29</td>
<td>Pe unifacial</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>67</td>
<td>56</td>
<td>26</td>
<td>VIB</td>
<td>199.6</td>
<td>PyP bifacial</td>
<td>trans</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>71</td>
<td>51</td>
<td>31</td>
<td>VIB</td>
<td>143.4</td>
<td>Pe unifacial</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>No K</td>
<td>73</td>
<td>42</td>
<td>14</td>
<td>VA</td>
<td>62.6</td>
<td>Pe unifacial</td>
<td>trans</td>
<td></td>
</tr>
<tr>
<td>No K</td>
<td>55</td>
<td>45</td>
<td>23</td>
<td>VIB</td>
<td>85.6</td>
<td>PyP bifacial</td>
<td>2 ejes</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>88</td>
<td>67</td>
<td>32</td>
<td>VA</td>
<td>245</td>
<td>Pe. bifacial</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>80</td>
<td>48</td>
<td>20</td>
<td>VA</td>
<td>114.7</td>
<td>PyP bifacial</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>42</td>
<td>30</td>
<td>11</td>
<td>VIB</td>
<td>21.9</td>
<td>Pe unifacial</td>
<td>trans</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>47</td>
<td>35</td>
<td>15</td>
<td>VIB</td>
<td>27.6</td>
<td>Pe unifacial</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>80.03</td>
<td>62.44</td>
<td>35.08</td>
<td>cuarn</td>
<td>245</td>
<td>PyP bifacial</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>67.7</td>
<td>42.23</td>
<td>22.41</td>
<td>VA</td>
<td>107.7</td>
<td>Pe unifacial</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>69.51</td>
<td>56.4</td>
<td>24.99</td>
<td>VA</td>
<td>140.5</td>
<td>PyP bifacial</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>PP</td>
<td>69</td>
<td>55</td>
<td>24</td>
<td>VA</td>
<td>132.2</td>
<td>PyP bifacial</td>
<td>trans</td>
<td></td>
</tr>
<tr>
<td>PP</td>
<td>81</td>
<td>62</td>
<td>28</td>
<td>VA</td>
<td>152.8</td>
<td>PyP bifacial</td>
<td>long</td>
<td></td>
</tr>
</tbody>
</table>

continúa
<table>
<thead>
<tr>
<th>PP</th>
<th>70</th>
<th>54</th>
<th>21</th>
<th>VIB</th>
<th>115</th>
<th>Pe. bifacial</th>
<th>trans</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP</td>
<td>65</td>
<td>61</td>
<td>23</td>
<td>VIB</td>
<td>138.5</td>
<td>Pe. unifacial</td>
<td>long</td>
</tr>
<tr>
<td>PP</td>
<td>71</td>
<td>53</td>
<td>31</td>
<td>VA</td>
<td>145.1</td>
<td>Pe. unifacial</td>
<td>trans</td>
</tr>
<tr>
<td>PP</td>
<td>73</td>
<td>50</td>
<td>24</td>
<td>VA</td>
<td>114.3</td>
<td>Pe. unifacial</td>
<td>trans</td>
</tr>
<tr>
<td>PP</td>
<td>60</td>
<td>47</td>
<td>22</td>
<td>VIB</td>
<td>83.1</td>
<td>Pe. unifacial</td>
<td>trans</td>
</tr>
<tr>
<td>PP</td>
<td>71</td>
<td>53</td>
<td>27</td>
<td>VA</td>
<td>140.5</td>
<td>Pe. bifacial</td>
<td>long</td>
</tr>
<tr>
<td>PP</td>
<td>68</td>
<td>52</td>
<td>27</td>
<td>VA</td>
<td>108.8</td>
<td>Pe. unifacial</td>
<td>long</td>
</tr>
<tr>
<td>PP</td>
<td>68</td>
<td>51</td>
<td>20</td>
<td>VIB</td>
<td>102.7</td>
<td>PyP bifacial</td>
<td>trans</td>
</tr>
<tr>
<td>PP</td>
<td>65</td>
<td>57</td>
<td>18</td>
<td>VIB</td>
<td>90.8</td>
<td>PyP</td>
<td>trans</td>
</tr>
<tr>
<td>PP</td>
<td>80</td>
<td>48</td>
<td>29</td>
<td>VIB</td>
<td>154.2</td>
<td>Pe. unifacial</td>
<td>long</td>
</tr>
<tr>
<td>PP</td>
<td>79</td>
<td>57</td>
<td>23</td>
<td>cuarzo</td>
<td>150.9</td>
<td>Pe. unifacial</td>
<td>long</td>
</tr>
<tr>
<td>PP</td>
<td>54</td>
<td>46</td>
<td>16</td>
<td>VIB</td>
<td>59.5</td>
<td>Pe. unifacial</td>
<td>trans</td>
</tr>
<tr>
<td>PP</td>
<td>74</td>
<td>49</td>
<td>19</td>
<td>VA</td>
<td>87.6</td>
<td>PyP</td>
<td>trans</td>
</tr>
<tr>
<td>PP</td>
<td>69</td>
<td>61</td>
<td>31</td>
<td>VA</td>
<td>182.5</td>
<td>Pe. unifacial</td>
<td>trans</td>
</tr>
<tr>
<td>PP</td>
<td>72</td>
<td>56</td>
<td>24</td>
<td>VIB</td>
<td>150.9</td>
<td>PyP</td>
<td>trans</td>
</tr>
<tr>
<td>PP</td>
<td>56</td>
<td>47</td>
<td>31</td>
<td>VIB</td>
<td>118.9</td>
<td>Pe. unifacial</td>
<td>trans</td>
</tr>
<tr>
<td>PP</td>
<td>64</td>
<td>60</td>
<td>29</td>
<td>VA</td>
<td>160.8</td>
<td>PyP</td>
<td>trans</td>
</tr>
<tr>
<td>PP</td>
<td>68</td>
<td>49</td>
<td>20</td>
<td>VIB</td>
<td>96.9</td>
<td>PyP</td>
<td>trans</td>
</tr>
<tr>
<td>PP</td>
<td>69</td>
<td>56</td>
<td>27</td>
<td>VA</td>
<td>156.3</td>
<td>PyP</td>
<td>trans</td>
</tr>
<tr>
<td>PP</td>
<td>59</td>
<td>41</td>
<td>15</td>
<td>VIB</td>
<td>51.4</td>
<td>Pe. unifacial</td>
<td>trans</td>
</tr>
<tr>
<td>PP</td>
<td>76</td>
<td>51</td>
<td>24</td>
<td>VIB</td>
<td>114.5</td>
<td>Pe. unifacial</td>
<td>trans</td>
</tr>
<tr>
<td>PP</td>
<td>66</td>
<td>55</td>
<td>27</td>
<td>VIB</td>
<td>200</td>
<td>PyP</td>
<td>long</td>
</tr>
<tr>
<td>ALPAT</td>
<td>69.95</td>
<td>65.89</td>
<td>52.08</td>
<td>VA</td>
<td>250</td>
<td>PyP</td>
<td>trans</td>
</tr>
<tr>
<td>ALPAT</td>
<td>82.2</td>
<td>62.38</td>
<td>27.98</td>
<td>VIB</td>
<td>209.5</td>
<td>Pe. unifacial</td>
<td>trans</td>
</tr>
<tr>
<td>ALPAT</td>
<td>70.22</td>
<td>62.35</td>
<td>22.69</td>
<td>VA</td>
<td>144.3</td>
<td>Pe. bifacial</td>
<td>trans</td>
</tr>
<tr>
<td>ALPAT</td>
<td>64.48</td>
<td>55.53</td>
<td>21.71</td>
<td>VIB</td>
<td>111.3</td>
<td>Pe. bifacial</td>
<td>long</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PO</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sec. 3</td>
<td>65.89</td>
<td>43.14</td>
<td>20.53</td>
<td>VA</td>
<td>85</td>
<td>PyP unifacial</td>
<td>long</td>
</tr>
<tr>
<td>Sec. 3</td>
<td>67.93</td>
<td>57.15</td>
<td>18.39</td>
<td>VA</td>
<td>100</td>
<td>Pe unifacial</td>
<td>long</td>
</tr>
<tr>
<td>Sec. 3</td>
<td>71.06</td>
<td>62.42</td>
<td>24.27</td>
<td>VA</td>
<td>166</td>
<td>PyP unifacial</td>
<td>trans</td>
</tr>
<tr>
<td>Sec. 3</td>
<td>62.73</td>
<td>52.63</td>
<td>24.22</td>
<td>VA</td>
<td>115</td>
<td>Pe unifacial</td>
<td>long</td>
</tr>
<tr>
<td>Sec. 3</td>
<td>72.35</td>
<td>46.88</td>
<td>22.58</td>
<td>VA</td>
<td>105</td>
<td>Pe. bifacial</td>
<td>long</td>
</tr>
<tr>
<td>Sec. 3</td>
<td>67.23</td>
<td>55.24</td>
<td>21.36</td>
<td>VA</td>
<td>108</td>
<td>PyP unifacial</td>
<td>trans</td>
</tr>
<tr>
<td>Sec. 3</td>
<td>69.62</td>
<td>53.66</td>
<td>29.4</td>
<td>VA</td>
<td>130</td>
<td>Pe unifacial</td>
<td>trans</td>
</tr>
<tr>
<td>Sec. 3</td>
<td>72.34</td>
<td>56.19</td>
<td>19.78</td>
<td>VA</td>
<td>116</td>
<td>PyP unifacial</td>
<td>long</td>
</tr>
<tr>
<td>Sec. 3</td>
<td>78.3</td>
<td>57.61</td>
<td>19.91</td>
<td>VA</td>
<td>118</td>
<td>Pe unifacial</td>
<td>long</td>
</tr>
<tr>
<td>Sec. 3</td>
<td>45.65</td>
<td>36.45</td>
<td>16.92</td>
<td>VA</td>
<td>38</td>
<td>PyP bifacial</td>
<td>long</td>
</tr>
<tr>
<td>Sec. 3</td>
<td>76.88</td>
<td>50.88</td>
<td>27.94</td>
<td>VA</td>
<td>157</td>
<td>PyP unifacial</td>
<td>long</td>
</tr>
<tr>
<td>Sec. 3</td>
<td>83.51</td>
<td>62.86</td>
<td>21.88</td>
<td>VA</td>
<td>180</td>
<td>Pe unifacial</td>
<td>dos ejes</td>
</tr>
<tr>
<td>Sec. 3</td>
<td>84.39</td>
<td>61.87</td>
<td>29.3</td>
<td>VA</td>
<td>183</td>
<td>PyP unifacial</td>
<td>long</td>
</tr>
<tr>
<td>Sec. 3</td>
<td>69.57</td>
<td>55.24</td>
<td>32.93</td>
<td>VA</td>
<td>152</td>
<td>Pe unifacial</td>
<td>long</td>
</tr>
<tr>
<td>Sec. 3</td>
<td>45.65</td>
<td>54.5</td>
<td>20.71</td>
<td>VA</td>
<td>90</td>
<td>PyP unifacial</td>
<td>long</td>
</tr>
<tr>
<td>Sec. 3</td>
<td>100.7</td>
<td>67.57</td>
<td>33.91</td>
<td>VA</td>
<td>298</td>
<td>Pe. bifacial</td>
<td>long</td>
</tr>
<tr>
<td>Sec. 3</td>
<td>65.34</td>
<td>56.45</td>
<td>22.13</td>
<td>VA</td>
<td>102</td>
<td>PyP unifacial</td>
<td>trans</td>
</tr>
<tr>
<td>Sec. 3</td>
<td>46.06</td>
<td>37.98</td>
<td>15.61</td>
<td>VA</td>
<td>40</td>
<td>PyP unifacial</td>
<td>long</td>
</tr>
<tr>
<td>Sec. 3</td>
<td>70.36</td>
<td>52.63</td>
<td>28.42</td>
<td>VA</td>
<td>122</td>
<td>Pe unifacial</td>
<td>trans</td>
</tr>
</tbody>
</table>

continúa
<table>
<thead>
<tr>
<th>Sec. 3</th>
<th>Sec. 3</th>
<th>Sec. 3</th>
<th>Sec. 3</th>
<th>Sec. 3</th>
<th>Sec. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>77.78</td>
<td>52.32</td>
<td>30.01</td>
<td>VA</td>
<td>177</td>
<td>PyP unifacial</td>
</tr>
<tr>
<td>75.57</td>
<td>60.03</td>
<td>23.9</td>
<td>VA</td>
<td>159</td>
<td>Pe, bifacial</td>
</tr>
<tr>
<td>63.26</td>
<td>48.52</td>
<td>22.28</td>
<td>VA</td>
<td>89</td>
<td>Pe, bifacial</td>
</tr>
<tr>
<td>62.70</td>
<td>55.8</td>
<td>16.08</td>
<td>VA</td>
<td>87</td>
<td>Pe unifacial</td>
</tr>
<tr>
<td>83.89</td>
<td>64.07</td>
<td>29.78</td>
<td>VA</td>
<td>206</td>
<td>PyP unifacial</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P. PORFIDO</th>
<th>P. PORFIDO</th>
<th>P. PORFIDO</th>
<th>P. PORFIDO</th>
<th>P. PORFIDO</th>
<th>P. PORFIDO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camino</td>
<td>Camino</td>
<td>Camino</td>
<td>Camino</td>
<td>Camino</td>
<td>Camino</td>
</tr>
<tr>
<td>74.3</td>
<td>58.58</td>
<td>27.42</td>
<td>VA</td>
<td>155</td>
<td>PyP unifacial</td>
</tr>
<tr>
<td>75.79</td>
<td>65.03</td>
<td>34.5</td>
<td>VA</td>
<td>222</td>
<td>PyP unifacial</td>
</tr>
<tr>
<td>81.93</td>
<td>56.68</td>
<td>23.19</td>
<td>VA</td>
<td>129</td>
<td>PyP unifacial</td>
</tr>
<tr>
<td>54.75</td>
<td>44.64</td>
<td>12.79</td>
<td>VA</td>
<td>41</td>
<td>PyP bifacial</td>
</tr>
<tr>
<td>80.8</td>
<td>51.61</td>
<td>22.54</td>
<td>VA</td>
<td>139</td>
<td>Pe unifacial</td>
</tr>
<tr>
<td>62.06</td>
<td>62.05</td>
<td>25.73</td>
<td>VA</td>
<td>122</td>
<td>PyP bifacial</td>
</tr>
<tr>
<td>47.62</td>
<td>38.56</td>
<td>15.18</td>
<td>VA</td>
<td>39</td>
<td>Pe unifacial</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AV</th>
<th>AV</th>
<th>AV</th>
<th>AV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sec. 1</td>
<td>Sec. 1</td>
<td>Sec. 1</td>
<td>Sec. 1</td>
</tr>
<tr>
<td>81.78</td>
<td>64.22</td>
<td>28.8</td>
<td>VA</td>
</tr>
<tr>
<td>71.68</td>
<td>51.52</td>
<td>32.44</td>
<td>VA</td>
</tr>
</tbody>
</table>

Tabla A.2. Variables analizadas para el conjunto de pesas líticas de todas las localidades.
Tabla A.3. MAU% de los principales especies del locus BC PALEO Sondeo 1.

<table>
<thead>
<tr>
<th>Unidad Anatómica</th>
<th>A. patachonicus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frontal</td>
<td>-</td>
</tr>
<tr>
<td>Articular</td>
<td>-</td>
</tr>
<tr>
<td>Basioccipital</td>
<td>-</td>
</tr>
<tr>
<td>Ceratohial</td>
<td>-</td>
</tr>
<tr>
<td>Cuadrado</td>
<td>-</td>
</tr>
<tr>
<td>Dentario</td>
<td>50</td>
</tr>
<tr>
<td>Ectotergoideo</td>
<td>-</td>
</tr>
<tr>
<td>Epiañial</td>
<td>-</td>
</tr>
<tr>
<td>Epilotic</td>
<td>-</td>
</tr>
<tr>
<td>Etmoïdes</td>
<td>-</td>
</tr>
<tr>
<td>Hiomandibular</td>
<td>-</td>
</tr>
<tr>
<td>Maxilar</td>
<td>-</td>
</tr>
<tr>
<td>Neurocraneo</td>
<td>-</td>
</tr>
<tr>
<td>Opercular</td>
<td>-</td>
</tr>
<tr>
<td>Otolito</td>
<td>-</td>
</tr>
<tr>
<td>Palatino</td>
<td>50</td>
</tr>
<tr>
<td>Paraesfenoides</td>
<td>-</td>
</tr>
<tr>
<td>Premaxilar</td>
<td>-</td>
</tr>
<tr>
<td>Preopercular</td>
<td>-</td>
</tr>
<tr>
<td>Subopercular</td>
<td>-</td>
</tr>
<tr>
<td>Vómer</td>
<td>100</td>
</tr>
<tr>
<td>Cleitro</td>
<td>-</td>
</tr>
<tr>
<td>Coracoideo</td>
<td>-</td>
</tr>
<tr>
<td>Supracleitro</td>
<td>-</td>
</tr>
<tr>
<td>Posttemporal</td>
<td>-</td>
</tr>
<tr>
<td>Pterigoforeo</td>
<td>-</td>
</tr>
<tr>
<td>6ta Brânquea Mod</td>
<td>-</td>
</tr>
<tr>
<td>Atlas</td>
<td>-</td>
</tr>
<tr>
<td>Vértebra</td>
<td>-</td>
</tr>
<tr>
<td>Vértebra caudal</td>
<td>6</td>
</tr>
<tr>
<td>Vértebra precaudal</td>
<td>-</td>
</tr>
<tr>
<td>Unidad Anatómica</td>
<td>M. funeris</td>
</tr>
<tr>
<td>------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Frontal</td>
<td>-</td>
</tr>
<tr>
<td>Articular</td>
<td>-</td>
</tr>
<tr>
<td>Basioccipital</td>
<td>-</td>
</tr>
<tr>
<td>Ceratohial</td>
<td>-</td>
</tr>
<tr>
<td>Cuadrado</td>
<td>-</td>
</tr>
<tr>
<td>Dentario</td>
<td>-</td>
</tr>
<tr>
<td>Ectotergigoide</td>
<td>-</td>
</tr>
<tr>
<td>Epialhial</td>
<td>-</td>
</tr>
<tr>
<td>Epiotic</td>
<td>-</td>
</tr>
<tr>
<td>Etmoides</td>
<td>-</td>
</tr>
<tr>
<td>Hiomandibular</td>
<td>-</td>
</tr>
<tr>
<td>Maxilar</td>
<td>-</td>
</tr>
<tr>
<td>Neurocraneo</td>
<td>-</td>
</tr>
<tr>
<td>Opercular</td>
<td>-</td>
</tr>
<tr>
<td>Otolito</td>
<td>-</td>
</tr>
<tr>
<td>Palatino</td>
<td>-</td>
</tr>
<tr>
<td>Paraesfenoides</td>
<td>-</td>
</tr>
<tr>
<td>Premaxilar</td>
<td>-</td>
</tr>
<tr>
<td>Preopercular</td>
<td>-</td>
</tr>
<tr>
<td>Subopercular</td>
<td>-</td>
</tr>
<tr>
<td>Vómer</td>
<td>-</td>
</tr>
<tr>
<td>Cleitro</td>
<td>-</td>
</tr>
<tr>
<td>Coracoideo</td>
<td>-</td>
</tr>
<tr>
<td>Supracleitro</td>
<td>-</td>
</tr>
<tr>
<td>Posttemporal</td>
<td>- 100</td>
</tr>
<tr>
<td>Pterigoforeo</td>
<td>100</td>
</tr>
<tr>
<td>Gáteo Brácneta Mod</td>
<td>-</td>
</tr>
<tr>
<td>Atlas</td>
<td>-</td>
</tr>
<tr>
<td>Vértebra</td>
<td>-</td>
</tr>
<tr>
<td>Vértebra caudal</td>
<td>3 40</td>
</tr>
<tr>
<td>Vértebra precaudal</td>
<td>5</td>
</tr>
</tbody>
</table>

Tabla A.4. MAU% de las principales especies del locus BC PAE Sondeo 2.
<table>
<thead>
<tr>
<th>Unidad Anatómica</th>
<th>P. paraxistinus</th>
<th>A. parachoekicus</th>
<th>Odontesthes sp.</th>
<th>Paralichthys sp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frontal</td>
<td>30,76</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Articular</td>
<td>38,46</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Basioccipital</td>
<td>61,53</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ceratohial</td>
<td>53,84</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cuadrado</td>
<td>15,38</td>
<td>100</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>Dentario</td>
<td>23,07</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ectoterigoideo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Epiahihial</td>
<td>30,76</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Epiotic</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Etmoide</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hiomandibular</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Maxilar</td>
<td>30,76</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Neurocraneo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Opercular</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Otolito</td>
<td>30,76</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Palatino</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Paraesfenoides</td>
<td>46,15</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parietal</td>
<td>15,38</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Premaxilar</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Preopercular</td>
<td>38,46</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pterotic</td>
<td>23,07</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Subopercular</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vómer</td>
<td>96,46</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E. Apendicular</td>
<td>Cleito</td>
<td>-</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>Coracoideo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Supracleito</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Posttemporal</td>
<td>15,38</td>
<td>100</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>Pterigoforeo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6ta Bránquea Mod</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E. Axial</td>
<td>Atlas</td>
<td>15,38</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vértebra</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>Vértebra caudal</td>
<td>0,3</td>
<td>-</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Vértebra precaudal</td>
<td>42,3</td>
<td>-</td>
<td>10</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabla A.5. MAU% de las principales especies del locus BC PAE Sondeo 3.
<table>
<thead>
<tr>
<th>Unidad Anatómica</th>
<th>P. porosissimus</th>
<th>Paracheilichthys sp.</th>
<th>Odontesthes sp.</th>
<th>U. canosai</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frontal</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parietal</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pterotico</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Neurocraneo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Articular</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Basioccipital</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ceratohial</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cuadrado</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dentario</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Epialial</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Etmoides</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hiomandibular</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Maxilar</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Opercular</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Otolito</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Palatino</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Paraesfenoides</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Premaxilar</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Preopercular</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Subopercular</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vómer</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

E. Apendicular			-	-
Cleito	-	-	-	-
Coracoideo	-	-	-	-
Supracleito	-	-	-	-
Posttemporal	-	-	-	100
Pterigoforeo	-	-	-	-
Gta Bránqunea Mod	-	-	-	-

E. Axial			-	-
Atlas	-	-	-	-
Vértebra	-	-	-	-
Vértebra caudal	20	100	100	10
Vértebra precaudal	60	-	30	-

Tabla A.6. MAU% de las principales especies del locus BC PAE Sondeo 4.
Tabla A.7. MAU% de las principales especies del locus BC PAE Sondeo 5.

<table>
<thead>
<tr>
<th>Unidad Anatómica</th>
<th>A. Parachorinus</th>
<th>P. poracanthus</th>
<th>P. brasiliensis</th>
<th>Parachthys sp.</th>
<th>E. macdonilus</th>
<th>Odontesthes sp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esqueleto Cranial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frontal</td>
<td>-</td>
<td>27,98</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parietal</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pterotico</td>
<td>14,28</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Neurocraneo</td>
<td>-</td>
<td>55,97</td>
<td>22,42</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Articular</td>
<td>42,8</td>
<td>46,64</td>
<td>44,84</td>
<td>100</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>Basioccipital</td>
<td>-</td>
<td>93,28</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>Ceratohial</td>
<td>57,14</td>
<td>69,96</td>
<td>44,84</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cuadrado</td>
<td>57,14</td>
<td>13,99</td>
<td>44,84</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dentario</td>
<td>57,14</td>
<td>9,32</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>Epiahis</td>
<td>42,8</td>
<td>13,99</td>
<td>44,84</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Etmoides</td>
<td>-</td>
<td>13,99</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hiomandibular</td>
<td>42,8</td>
<td>65,29</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Maxilar</td>
<td>28,57</td>
<td>32,64</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>Opercular</td>
<td>100</td>
<td>37,31</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>Otolito</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Palatino</td>
<td>-</td>
<td>41,97</td>
<td>44,84</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Paraesfenoides</td>
<td>57,14</td>
<td>46,64</td>
<td>44,84</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Premaxilar</td>
<td>14,28</td>
<td>23,32</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>Preopercular</td>
<td>57,14</td>
<td>-</td>
<td>22,42</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Subopercular</td>
<td>-</td>
<td>-</td>
<td>22,42</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vómer</td>
<td>28,57</td>
<td>18,65</td>
<td>89,6</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E. Apendicular</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleito</td>
<td>14,28</td>
<td>69,96</td>
<td>22,42</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Coracoideo</td>
<td>28,57</td>
<td>4,64</td>
<td>22,42</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Supraclitro</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Posttemporal</td>
<td>42,8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pterigoforeo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6ta Bráñquea Mod</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E. Axial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atlas</td>
<td>57,14</td>
<td>46,64</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vértabra</td>
<td>-</td>
<td>1,39</td>
<td>-</td>
<td>-</td>
<td>22</td>
<td>16,6</td>
</tr>
<tr>
<td>Vértebra caudal</td>
<td>40</td>
<td>46,73</td>
<td>98,6</td>
<td>40</td>
<td>52</td>
<td>100</td>
</tr>
<tr>
<td>Vértebra precaudal</td>
<td>34,28</td>
<td>100</td>
<td>100</td>
<td>52</td>
<td>15</td>
<td>8,3</td>
</tr>
</tbody>
</table>

Bibliografía
<table>
<thead>
<tr>
<th>Unidad Anatómica</th>
<th>E. porosissimus</th>
<th>Paralichthys sp.</th>
<th>Odontesthes sp.</th>
<th>U. canosa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frontal</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parietal</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pterotico</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Neurocraneo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Articular</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Basioccipital</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ceratohial</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cuadrado</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dentario</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Epiahial</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Etmoides</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hiomandibular</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Maxilar</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Opercular</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Otolito</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Palatino</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Paraesfenoides</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Premaxilar</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Preopercular</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Subopercular</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vómer</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cleitro</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Coracoideo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Supracleitro</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Posttemporal</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>Pterigoforo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6ta Bránquea Mod</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atlas</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vértebra</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vértebra caudal</td>
<td>20 100 100 10</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vértebra precaudal</td>
<td>60</td>
<td>-</td>
<td>30</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabla A.8. MAU% de las principales especies del locus BC PAE Sondeo 6.
<table>
<thead>
<tr>
<th>Unidad Anatómica</th>
<th>A. parochonicus</th>
<th>B. argentinus</th>
<th>E. maclovinius</th>
<th>Odontesthes sp.</th>
<th>P. maculatus</th>
<th>P. brasiliensis</th>
<th>P. paracanopsis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frontal</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parietal</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pterotico</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Neurocraneo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Articular</td>
<td>- 50</td>
<td>- 100</td>
<td>- 100</td>
<td>39.3</td>
<td>- 3.6</td>
<td>- 17.85</td>
<td>- 17.85</td>
</tr>
<tr>
<td>Basiocipital</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ceratohial</td>
<td>- 50</td>
<td>- 100</td>
<td>- 100</td>
<td>17.85</td>
<td>- 3.6</td>
<td>- 17.85</td>
<td>- 17.85</td>
</tr>
<tr>
<td>Cuadrado</td>
<td>81.3</td>
<td>100</td>
<td>81.3</td>
<td>100</td>
<td>38.46</td>
<td>38.46</td>
<td>38.46</td>
</tr>
<tr>
<td>Dentario</td>
<td>- 50</td>
<td>- 100</td>
<td>- 100</td>
<td>32.18</td>
<td>- 17.85</td>
<td>- 17.85</td>
<td>- 17.85</td>
</tr>
<tr>
<td>Epiastral</td>
<td>- 100</td>
<td>50</td>
<td>100</td>
<td>14.28</td>
<td>- 7.14</td>
<td>- 7.14</td>
<td>- 7.14</td>
</tr>
<tr>
<td>Etmoides</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hiomandibular</td>
<td>38.46</td>
<td>- 50</td>
<td>38.46</td>
<td>21.42</td>
<td>- 17.85</td>
<td>- 17.85</td>
<td>- 17.85</td>
</tr>
<tr>
<td>Maxilar</td>
<td>- 50</td>
<td>- 100</td>
<td>- 100</td>
<td>32.18</td>
<td>- 17.85</td>
<td>- 17.85</td>
<td>- 17.85</td>
</tr>
<tr>
<td>Otolito</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Palatino</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Paraesfenoides</td>
<td>81.3</td>
<td>-</td>
<td>81.3</td>
<td>100</td>
<td>- 32.18</td>
<td>- 100</td>
<td>- 100</td>
</tr>
<tr>
<td>Premaxilar</td>
<td>38.46</td>
<td>-</td>
<td>- 38.46</td>
<td>- 100</td>
<td>32.18</td>
<td>32.18</td>
<td>32.18</td>
</tr>
<tr>
<td>Subopercular</td>
<td>-</td>
<td>-</td>
<td>- 100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vómer</td>
<td>- 100</td>
<td>100</td>
<td>- 100</td>
<td>7.14</td>
<td>- 7.14</td>
<td>- 7.14</td>
<td>- 7.14</td>
</tr>
<tr>
<td>Cleito</td>
<td>- 100</td>
<td>- 50</td>
<td>- 100</td>
<td>37.71</td>
<td>- 7.14</td>
<td>- 7.14</td>
<td>- 7.14</td>
</tr>
<tr>
<td>Coracoideo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Supraclito</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Posttemporal</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pterigoforeo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6ta Bráqunea Mod</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atlas</td>
<td>- 100</td>
<td>100</td>
<td>100</td>
<td>42.85</td>
<td>- 4.14</td>
<td>- 34.25</td>
<td>- 34.25</td>
</tr>
<tr>
<td>Vértabra</td>
<td>- 47</td>
<td>-</td>
<td>- 47</td>
<td>- 14.5</td>
<td>- 4.14</td>
<td>- 14.5</td>
<td>- 14.5</td>
</tr>
<tr>
<td>Vértebra caudal</td>
<td>100</td>
<td>44</td>
<td>4.3</td>
<td>22</td>
<td>14.5</td>
<td>- 14.5</td>
<td>- 14.5</td>
</tr>
<tr>
<td>Vértebra precaudal</td>
<td>- 47</td>
<td>19</td>
<td>80</td>
<td>- 34.25</td>
<td>- 14.5</td>
<td>- 14.5</td>
<td>- 14.5</td>
</tr>
</tbody>
</table>

Tabla A.9. MAU% de las principales especies del locus BQ Concho 80.
<table>
<thead>
<tr>
<th>Unidad Anatómica</th>
<th>A. parachoicus</th>
<th>B. argenteus</th>
<th>D. argenteus</th>
<th>E. maculatus</th>
<th>M. furnieri</th>
<th>Odontesthes sp.</th>
<th>Poroichthys sp.</th>
<th>P. brasiliensis</th>
<th>P. crants</th>
<th>P. porossimus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frontal</td>
<td>-</td>
</tr>
<tr>
<td>Parietal</td>
<td>-</td>
</tr>
<tr>
<td>Pterotico</td>
<td>-</td>
</tr>
<tr>
<td>Neurocraneo</td>
<td>-</td>
</tr>
<tr>
<td>Articular</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Basioccipital</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>Ceratohial</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cuadrado</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dentario</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Epiahial</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>75</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Etmoideos</td>
<td>-</td>
</tr>
<tr>
<td>Hiomandibular</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Maxilar</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>Opercular</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>Otolito</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Palatino</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Paraesfenoides</td>
<td>-</td>
</tr>
<tr>
<td>Premaxilar</td>
<td>100</td>
<td>100</td>
<td>-</td>
<td>25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>Preopercular</td>
<td>-</td>
</tr>
<tr>
<td>Subopercular</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vómer</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

E. Apendicular										
Clébitro	-	-	-	-	50	-	-	-	-	-
Coracoideo	-	-	-	-	-	-	-	-	-	-
Supracleíto	-	-	-	-	-	-	-	-	-	-
Posttemporal	-	-	-	-	-	-	-	-	-	-
Pterigoforeo	-	-	-	-	-	-	-	-	-	-
6ta Bráquea Mod	-	-	-	-	-	-	-	-	-	-

E. Axial										
Atlas	-	-	-	-	-	-	-	-	-	-
Vértebra	-	-	-	15	-	11.42	-	-	-	-
Vértebra caudal	86	12	80	56	3.55	11.42	-	-	-	-
Vértebra precaudal	-	-	100	20	100	40	100	-	-	-

Tabla A.10. MAU% de las principales especies del locus BQ GPS 126.
<table>
<thead>
<tr>
<th>Unidad Anatómica</th>
<th>A. parochonicus</th>
<th>B. argentinus</th>
<th>E. macrovinius</th>
<th>M. furnieri</th>
<th>Otostesthes sp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frontal</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parietal</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pterotico</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Neurocraneo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Articular</td>
<td>100</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Basioccipital</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ceratohial</td>
<td>40</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cuadrado</td>
<td>40</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dentario</td>
<td>40</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Epiahial</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Etmoides</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hiomandibular</td>
<td>80</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Maxilar</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>Opercular</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Otolito</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Palatino</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Paraesfenoides</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Premaxilar</td>
<td>80</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Preopercular</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Subopercular</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vómer</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cleitro</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Coracoideo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Supracleitro</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Posttemporal</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pterigoforoene</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ínta Bránquea Mod</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E. Axial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atlas</td>
<td>40</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vértebra</td>
<td>-</td>
<td>-</td>
<td>36.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vértebra caudal</td>
<td>30</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vértebra precaudal</td>
<td>4</td>
<td>12</td>
<td>22</td>
<td>-</td>
<td>100</td>
</tr>
</tbody>
</table>

Tabla A.11. MAU% de las principales especies del locus BQ GPS 125.
Federico L. Scartascini

<table>
<thead>
<tr>
<th>Unidad Anatómica</th>
<th>A. potachonicus</th>
<th>E. macdoweni</th>
<th>Odontesthes sp.</th>
<th>Paralichthys sp.</th>
<th>P. brasiliensis</th>
<th>P. porosisimus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frontal</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parietal</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pterotico</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Neurocraneo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>Articular</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Basioccipital</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ceratohial</td>
<td>33.3</td>
<td>-</td>
<td>-</td>
<td>20</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>Cuadrado</td>
<td>33.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dentario</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>Epialial</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>30</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Etmoides</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hiomandibular</td>
<td>66.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Maxilar</td>
<td>33.3</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Opercular</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Otolito</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Palatino</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Paraesfenoides</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Premaxilar</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>Preopercular</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Subopercular</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vómer</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cleito</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Coracoideo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Supracleito</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Posttemporal</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pterigoforeo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6ta Bráñnea Mod</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabla A.12. MAU% de las principales especies del locus BQ GPS 142.
<table>
<thead>
<tr>
<th>Tabla A.13. MAU% de las principales especies del locus BQ Sector 1 Sondeo 2.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unidad Anatómica</td>
</tr>
<tr>
<td>Esqueleto Craneal</td>
</tr>
<tr>
<td>Frontal</td>
</tr>
<tr>
<td>Parietal</td>
</tr>
<tr>
<td>Pterotico</td>
</tr>
<tr>
<td>Neurocraneo</td>
</tr>
<tr>
<td>Articular</td>
</tr>
<tr>
<td>Basioccipital</td>
</tr>
<tr>
<td>Ceratohial</td>
</tr>
<tr>
<td>Cuadrado</td>
</tr>
<tr>
<td>Dentario</td>
</tr>
<tr>
<td>Epihial</td>
</tr>
<tr>
<td>Etmoideas</td>
</tr>
<tr>
<td>Hiomandibular</td>
</tr>
<tr>
<td>Maxilar</td>
</tr>
<tr>
<td>Opercular</td>
</tr>
<tr>
<td>Otolito</td>
</tr>
<tr>
<td>Palatino</td>
</tr>
<tr>
<td>Paraesfenoides</td>
</tr>
<tr>
<td>Premaxilar</td>
</tr>
<tr>
<td>Preopercular</td>
</tr>
<tr>
<td>Subopercular</td>
</tr>
<tr>
<td>Vómer</td>
</tr>
<tr>
<td>E. Apendicular</td>
</tr>
<tr>
<td>Cleitro</td>
</tr>
<tr>
<td>Coracoideo</td>
</tr>
<tr>
<td>Supracleitro</td>
</tr>
<tr>
<td>Posttemporal</td>
</tr>
<tr>
<td>Pterigoforeo</td>
</tr>
<tr>
<td>6ta Bráinquea Mod</td>
</tr>
<tr>
<td>E. Axial</td>
</tr>
<tr>
<td>Atlas</td>
</tr>
<tr>
<td>Vértebra</td>
</tr>
<tr>
<td>Vértebra caudal</td>
</tr>
<tr>
<td>Vértebra precaudal</td>
</tr>
</tbody>
</table>

Bibliografía
<table>
<thead>
<tr>
<th>Unidad Anatómica</th>
<th>A. patagonicus</th>
<th>D. argenteus</th>
<th>D. maculatus</th>
<th>M. fumieri</th>
<th>Odontesthes sp.</th>
<th>Paralichthys sp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frontal</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Articular</td>
<td>-</td>
<td>7.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Basioccipital</td>
<td>-</td>
<td>47.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ceratohial</td>
<td>-</td>
<td>8.75</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cuadrado</td>
<td>-</td>
<td>21.25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dentario</td>
<td>-</td>
<td>7.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ectotergoideo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Epiahial</td>
<td>-</td>
<td>8.75</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Epiotic</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Etmoides</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hiomandibular</td>
<td>-</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Maxilar</td>
<td>-</td>
<td>7.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Neurocraneo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Opercular</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Otolito</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Palatino</td>
<td>-</td>
<td>43.75</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Paraesfenoides</td>
<td>-</td>
<td>37.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Premaxilar</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Preopercular</td>
<td>-</td>
<td>1.25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Subopercular</td>
<td>-</td>
<td>2.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vómer</td>
<td>-</td>
<td>2.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cleitro</td>
<td>-</td>
<td>3.75</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Coracoideo</td>
<td>-</td>
<td>16.25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Supracleitro</td>
<td>-</td>
<td>25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Posttemporal</td>
<td>-</td>
<td>22.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pterigoforeo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6ta Bránquea Mod</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atlas</td>
<td>-</td>
<td>42.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vértebra</td>
<td>-</td>
<td>0.75</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vértebra caudal</td>
<td>-</td>
<td>46.75</td>
<td>100</td>
<td>4.6</td>
<td>-</td>
<td>38.8</td>
</tr>
<tr>
<td>Vértebra precaudal</td>
<td>100</td>
<td>33</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Tabla A.14. MAU% de las principales especies del locus SAO PC Sondeo 1.
<table>
<thead>
<tr>
<th>Unidad Anatómica</th>
<th>D. argenteus</th>
<th>Paralichthys sp.</th>
<th>Odontesthes sp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esqueleto Craneal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frontal</td>
<td>11,47</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Articular</td>
<td>15,3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Basioccipital</td>
<td>68,85</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>Ceratothial</td>
<td>22,95</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cuadrado</td>
<td>19,12</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>Dentario</td>
<td>34,42</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ectotteroigoideo</td>
<td>22,95</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Epiahill</td>
<td>19,12</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Epiotic</td>
<td>19,12</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Etmoides</td>
<td>7,65</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hiomandibular</td>
<td>11,47</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Maxilar</td>
<td>61,2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Neurocranio</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Opercular</td>
<td>11,47</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Otolito</td>
<td>22,95</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Palatino</td>
<td>57,38</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Paraesfenoides</td>
<td>61,2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Premaxilar</td>
<td>61,2</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>Preopercular</td>
<td>3,8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Subopercular</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vómer</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E. Apendicular</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleítro</td>
<td>11,47</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>Coracoideo</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Supraleítro</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Posttemporal</td>
<td>22,95</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pterigoforear</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6ta Bráñquea Mod</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E. Axial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atlas</td>
<td>91,83</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vértebra</td>
<td>2,9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vértebra caudal</td>
<td>100</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>Vértebra precaudal</td>
<td>92,57</td>
<td>40</td>
<td>10</td>
</tr>
</tbody>
</table>

Tabla A.15. MAU% de las principales especies del locus SAO PC Sondeo 2.
<table>
<thead>
<tr>
<th>Unidad Anatómica</th>
<th>A. pacicholinus</th>
<th>B. argentinus</th>
<th>D. argenteus</th>
<th>E. medovius</th>
<th>Odontesthes sp.</th>
<th>P. brasiliensis</th>
<th>P. paraguayensis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frontal</td>
<td>-</td>
<td>11,1</td>
<td>-</td>
<td>-</td>
<td>9,52</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Articular</td>
<td>-</td>
<td>-</td>
<td>11,8</td>
<td>-</td>
<td>-</td>
<td>38,09</td>
<td>-</td>
</tr>
<tr>
<td>Basioccipital</td>
<td>33,3</td>
<td>-</td>
<td>61,46</td>
<td>-</td>
<td>100</td>
<td>38,09</td>
<td>-</td>
</tr>
<tr>
<td>Ceratothial</td>
<td>16,6</td>
<td>-</td>
<td>9,45</td>
<td>-</td>
<td>-</td>
<td>52,3</td>
<td>-</td>
</tr>
<tr>
<td>Cuadrado</td>
<td>58,3</td>
<td>-</td>
<td>4,72</td>
<td>-</td>
<td>-</td>
<td>14,28</td>
<td>-</td>
</tr>
<tr>
<td>Dentario</td>
<td>75</td>
<td>-</td>
<td>30,7</td>
<td>-</td>
<td>-</td>
<td>19,04</td>
<td>-</td>
</tr>
<tr>
<td>Ectotergoide</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Epiahi</td>
<td>25</td>
<td>-</td>
<td>14,18</td>
<td>-</td>
<td>-</td>
<td>33,3</td>
<td>-</td>
</tr>
<tr>
<td>Epiotic</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Etmoidea</td>
<td>16,6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hiomandibular</td>
<td>50</td>
<td>-</td>
<td>47,28</td>
<td>-</td>
<td>-</td>
<td>23.8</td>
<td>45.8</td>
</tr>
<tr>
<td>Maxilar</td>
<td>66,6</td>
<td>-</td>
<td>18,8</td>
<td>-</td>
<td>-</td>
<td>9,52</td>
<td>-</td>
</tr>
<tr>
<td>Neurocraneo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Opercular</td>
<td>75</td>
<td>-</td>
<td>14,18</td>
<td>-</td>
<td>-</td>
<td>9,52</td>
<td>45.8</td>
</tr>
<tr>
<td>Otolito</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Palatino</td>
<td>16,6</td>
<td>-</td>
<td>35,4</td>
<td>-</td>
<td>-</td>
<td>23.8</td>
<td>-</td>
</tr>
<tr>
<td>Paraesfenoides</td>
<td>8,3</td>
<td>-</td>
<td>52</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Premaxilar</td>
<td>41,6</td>
<td>-</td>
<td>52</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Preopercular</td>
<td>41,6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>9,52</td>
<td>-</td>
</tr>
<tr>
<td>Subopercular</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vómer</td>
<td>16,6</td>
<td>-</td>
<td>52</td>
<td>-</td>
<td>50</td>
<td>28,57</td>
<td>-</td>
</tr>
<tr>
<td>Cleito</td>
<td>41,6</td>
<td>-</td>
<td>4,7</td>
<td>-</td>
<td>25</td>
<td>33,3</td>
<td>45.8</td>
</tr>
<tr>
<td>Coracoideo</td>
<td>-</td>
<td>11,1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4,7</td>
<td>-</td>
</tr>
<tr>
<td>Supracleito</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Posttemporal</td>
<td>16,6</td>
<td>-</td>
<td>37,8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pterigoforo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6ta Bránquea Mod</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atlas</td>
<td>100</td>
<td>-</td>
<td>52</td>
<td>-</td>
<td>-</td>
<td>38,09</td>
<td>-</td>
</tr>
<tr>
<td>Vértebra</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vértebra caudal</td>
<td>41,6</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>25</td>
<td>42.8</td>
<td>48.6</td>
</tr>
<tr>
<td>Vértebra precaudal</td>
<td>83,3</td>
<td>27,7</td>
<td>86,05</td>
<td>62</td>
<td>65</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Tabla A.16. MAU% de las principales especies del locus SV Caserío Sondéo 1.
<table>
<thead>
<tr>
<th>Unidad Anatómica</th>
<th>B. argentinus</th>
<th>Odontesthes sp.</th>
<th>P. brasiliensis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esqueleto craneal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frontal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Articular</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basioccipital</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceratohial</td>
<td></td>
<td>28,9</td>
<td></td>
</tr>
<tr>
<td>Cuadrado</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dentario</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ectotergoideo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epiahal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epiotic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etmoides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hiomandibular</td>
<td>28,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maxilar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neurocraneo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opercular</td>
<td>28,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otolito</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palatino</td>
<td>28,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paraesfenoides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Premaxilar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preopercular</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subopercular</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vómer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Apendicular</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleitro</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coracoideo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supracleitro</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posttemporal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pterigoforeo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6ta Bránquia Mod</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Axial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atlas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vértebra</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vértebra caudal</td>
<td>100</td>
<td>38,2</td>
<td></td>
</tr>
<tr>
<td>Vértebra precaudal</td>
<td>25,45</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Tabla A.17. MAU% de las principales especies del locus SV Histórico Sondeo 2.
<table>
<thead>
<tr>
<th>Esqueleto Cranial</th>
<th>Unidad Anatómica</th>
<th>A. potachonicus</th>
<th>D. argenteus sp.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frontal</td>
<td>33,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Articular</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basioccipital</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ceratohial</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cuadrado</td>
<td>33,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dentario</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ectotergigoideo</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Epiahial</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Epiotic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Etmoides</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hiomandibular</td>
<td>33,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maxilar</td>
<td>33,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neurocraneo</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Opercular</td>
<td>33,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Otolito</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Palatino</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paraesfenoides</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Premaxilar</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Preopercular</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subopercular</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vómer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Apendicular</td>
<td>Cleitro</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coracoideo</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Supracleitro</td>
<td>33,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Posttemporal</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pterigoforeo</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6ta Bránquea Mod</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Axial</td>
<td>Atlas</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vértebra</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vértebra caudal</td>
<td>57,3</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Vértebra precaudal</td>
<td>86,6</td>
<td>14,49</td>
</tr>
</tbody>
</table>

Tabla A.18. MAU% de las principales especies del locus SV Histórico Sondeo 1.
<table>
<thead>
<tr>
<th>Unidad Anatómica</th>
<th>A. parachoeki</th>
<th>B. argentinus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frontal</td>
<td>14,28</td>
<td>-</td>
</tr>
<tr>
<td>Articular</td>
<td>21,42</td>
<td>32,5</td>
</tr>
<tr>
<td>Basioccipital</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ceratoahial</td>
<td>85,71</td>
<td>62,5</td>
</tr>
<tr>
<td>Cuadrado</td>
<td>57,14</td>
<td>75</td>
</tr>
<tr>
<td>Dentario</td>
<td>37,71</td>
<td>-</td>
</tr>
<tr>
<td>Ectotergidoideo</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Epialhial</td>
<td>78,57</td>
<td>12,5</td>
</tr>
<tr>
<td>Epiotic</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Etmoides</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>Hiomandibular</td>
<td>42,85</td>
<td>25</td>
</tr>
<tr>
<td>Maxilar</td>
<td>21,42</td>
<td>25</td>
</tr>
<tr>
<td>Neurocraneo</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Opercular</td>
<td>7,14</td>
<td>100</td>
</tr>
<tr>
<td>Otolito</td>
<td>7,14</td>
<td>-</td>
</tr>
<tr>
<td>Palatio</td>
<td>28,57</td>
<td>-</td>
</tr>
<tr>
<td>Paraesfenoides</td>
<td>100</td>
<td>75</td>
</tr>
<tr>
<td>Premaxilar</td>
<td>21,42</td>
<td>37,5</td>
</tr>
<tr>
<td>Preopercular</td>
<td>21,42</td>
<td>12,5</td>
</tr>
<tr>
<td>Subopercular</td>
<td>28,57</td>
<td>25</td>
</tr>
<tr>
<td>Vómer</td>
<td>28,57</td>
<td>-</td>
</tr>
<tr>
<td>Cleitro</td>
<td>50</td>
<td>62,5</td>
</tr>
<tr>
<td>Coracoideo</td>
<td>7,14</td>
<td>62,5</td>
</tr>
<tr>
<td>Supracleitro</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Posttemporal</td>
<td>28,57</td>
<td>25</td>
</tr>
<tr>
<td>Pterigoforeo</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ñta Bránquea Mod</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabla A.19. MAU% de las principales especies del locus PO Sector 2 Sondeo 1.
<table>
<thead>
<tr>
<th>Unidad Anatómica</th>
<th>A. parachoeki</th>
<th>E. macoupinii</th>
<th>O. nattereri</th>
<th>P. elongatus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frontal</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Articular</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Basioccipital</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ceratohial</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cuadrado</td>
<td>-</td>
<td>-</td>
<td>40</td>
<td>-</td>
</tr>
<tr>
<td>Dentario</td>
<td>-</td>
<td>-</td>
<td>71,42</td>
<td>-</td>
</tr>
<tr>
<td>Ectotergidoide</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Epialial</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Epiotic</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Etmoide</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hiomandibular</td>
<td>71,42</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Maxilar</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Neurocraneo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Opercular</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Otolito</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Palatino</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Paradentomoides</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Premaxilar</td>
<td>-</td>
<td>-</td>
<td>80</td>
<td>-</td>
</tr>
<tr>
<td>Preopercular</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Subopercular</td>
<td>-</td>
<td>-</td>
<td>40</td>
<td>-</td>
</tr>
<tr>
<td>Vómer</td>
<td>-</td>
<td>-</td>
<td>80</td>
<td>-</td>
</tr>
<tr>
<td>Cleitro</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Coracoideo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Supracleitro</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Posttemporal</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pterigoforeo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sixta Bránquica Mod</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atlas</td>
<td>-</td>
<td>90,9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vértebra</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vértebra caudal</td>
<td>100</td>
<td>76,36</td>
<td>35,71</td>
<td>100</td>
</tr>
<tr>
<td>Vértebra precaudal</td>
<td>-</td>
<td>100</td>
<td>100</td>
<td>8</td>
</tr>
</tbody>
</table>

Tabla A.20. MAU% de las principales especies del locus PO Sector 2 Sondeo 2.
<table>
<thead>
<tr>
<th>Unidad Anatómica</th>
<th>A. pachonchitus</th>
<th>Odontesthes sp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frontal</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Articular</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Basioccipital</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ceratohial</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cuadrado</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dentario</td>
<td>-</td>
<td>71,42</td>
</tr>
<tr>
<td>Ectotergigoide</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Epiahial</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Epiotic</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Etmooides</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hiomandibular</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Maxilar</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Neurocraneo</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Opercular</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Otolito</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Palatino</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Paraesfenoides</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Premaxilar</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Preopercular</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Subopercular</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vómer</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cleitro</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Coracoideo</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Supracleitro</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Posttemporal</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pterigoforeo</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6ta Bráñquea Mod</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atlas</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vértebra</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vértebra caudal</td>
<td>43,3</td>
<td>100</td>
</tr>
<tr>
<td>Vértebra precaudal</td>
<td>100</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabla A.21. MAU% de las principales especies del locus PO Sector 3 Sondeo 1.
<table>
<thead>
<tr>
<th>Esqueleto Cranial</th>
<th>Unidad Anatómica</th>
<th>A. parachonius</th>
<th>T. argentina</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frontal</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Articular</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Basioccipital</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Ceratohial</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Cuadrado</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Dentario</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Ectotergoideo</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Epiahial</td>
<td>-</td>
<td>16,6</td>
</tr>
<tr>
<td></td>
<td>Epiotic</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Etmoides</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Hiomandibular</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Maxilar</td>
<td>16,6</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Neurocraneo</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Opercular</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Otolito</td>
<td>16,6</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Palatino</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Paraesfenoides</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Premaxilar</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Preopercular</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Subopercular</td>
<td>16,6</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Vómer</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E. Apendicular</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cleitro</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Coracoideo</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Supracleitro</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Posttemporal</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Pterigoforo</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>6ta Bránquea Mod</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E. Axial</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Atlas</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Vértebra</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Vértebra caudal</td>
<td>24,3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Vértebra precaudal</td>
<td>30 100</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabla A.22. MAU% de las principales especies del locus PO Sector 3 Sondeo 2.
Acheson, J. M.

Acosta, A., Loponte, D. y Musali, J.

Acosta, A. y Musali, J.
2001 Preservación diferencial de partes de peces: un caso de estudio para evaluar la composición de los conjuntos icthioarqueológicos. Comunicación en el XIV Congreso Nacional de Arqueología Argentina, Rosario.

Acosta, A., Musali, J. y Olub, J.

Aguirre, M. L.

2001 Molluscs as indicators of climatic changes in the marine Holocene of Argentina (South America). 58 Reunião do Quaternário Ibérico – 18 Congresso do Quaternário de Países de Línguas Ibéricas. Sociedad Geológica de Portugal, Grupo de Trabalho Português para o Estudo do Quaternário, Asociación Española para el Estudio del Cuaternario. (Lisboa), Actas, pp. 382-385.

Aguirre, M. L. y Whatley, R. C.

Aguirre, M. L., Zanchetta, G. y Fallick, A.

Ahmed, K. K. y Hambrey, J. B.

2014 Análisis de la disponibilidad y explotación de fuentes de materias primas líticas durante el Holoceno medio y tardío en la costa rionegrina del golfo San Matías, provincia de Río Negro, Argentina. Un enfoque regional. Archaeopress, Oxford UK.

Alberti, J. y Cardillo, M.
Alberti, J. y Fernández, M. V.

Aldazabal, V., Silveira, M. y Eugenio, E.

Ames, K.

Arrighoni, G., Andrieu, M. y Bañados, C.

Aswani, S.

Bailey, G. y Milner, N.

Bannerman, N. y Jones, C.

Barrientos, G. y Pérez, I. S.

Bassí, T., Miñon, D. P. y Giorgietti, H. P.

Bayón, C., Frontini, R. y Vecchi, R.

Bayón, C., Martínez, G. A., Armentano, G. y Scabuzzo, C.
2001 Arqueología del valle inferior del río Colorado: el sitio La Primavera. Trabajo presentado en el XIV Congreso Nacional de Arqueología Argentina, Rosario.

Béarez, P.

Béarez, P., Gay, P. y Lunniss, R.

Béarez, P. y Linnuiss, R.
Beaton, J. M.

Behrensmeyer, A. K.

Belardi, J. B.

Bernal Casasola, D.

Bernasconi, E. y Cusminky, G. C.

Bettinger, R. L.

Bettinger, R. L. y Baumhoff, M. A.

Binford, L.

Bird, D. W., Bird, R. B. y Codding, B. F.

Bird, D. W. y O’Connell, F. J.

Borella, F.

Borella, F. y Borrero, L. A.

Borella, F. y Buc, N.

Borella, F. y Cardillo, M.

Borella, F. y Cruz, I. 2012 Taphonomic evaluation of penguin (Spheniscidae) remains at a Shell midden on the northern coast of Patagonia (San Matías Gulf, Río Negro, Argentina). *Quaternary International*, 278: 45 – 50.

Borella, F., Favier Dubois, C. y Manzi, L. 2006 The explotation of coastal resources and space use patterns in norpatagonian coast during Late Holocene times. *Libro de Resúmenes del International Council for Archaeozoology-ICAZ- 10th Conference*, pp. 36-37, México DF.

Butler, V. L. y Chatters, J. C.

Butler, V. L. y O’Connor, J. E.

Butler, V. L. y Schroeder, R. A.

Butzer, K.

Cabrera A. L. y Willink, A.
1980 *Biogeografía de América Latina*. Monografías de la OEA. Washington D.C.

Campán, P.

Campán, P. y Manzi, L.

Campana, S. E.

Capitoli, R.

Cardillo, M.

Cardillo, M. y Alberti, J.

Cardillo, M. y Scartascini, F. L.

Carlström, P.

Casteel, R. W.

Cook, R. y Tapia R. G. 1994 Stationary intertidal fish traps in estuarine inlets on the Pacific coast of Panama: descriptions, evaluations of early dry season catches and relevance to the interpretation of dietary archaeofau-

Curtolo, L. M. 2004 Biodiversidad de vertebrados e invertebrados en la bahía de San Antonio. Instituto de Biología Ma-

David, N. y Kramer, C.

Deegan, L. A.

Deodat, L. S. M.

Di Giácomo, E., Perier, M., Pascual, M. y Zampati, E.

Dincauze, D. F.

Disspain, M., Wallis, L. A., Gillanders, B. M.

Dortch, C. E.

Erlandson, J. M.

Erlandson, J. M. y Fitzpatrick, S.

Erlandson, J. M. y Moss, M. L.

Ewonus, P. A., Cannon, A. y Yang, D. Y.

Falabella, F., Loreto Vargas, M. y Meléndez, R.

FAO
2012 *Composition of Fish*. Fisheries and Aquaculture Department.

Favier Dubois, C. M.

Favier Dubois, C. M. y Borella, F.

2007 Dieta, uso del espacio y evolución en poblaciones cazadoras recolectoras de la costa centro-septentrional de Patagonia durante el Holoceno medio y tardío. Tesis doctoral inédita. Facultad de Filosofía y Letras. Universidad de Buenos.

Gómez Otero, J., Banegas, A., Goye, M. S., Palleres, D., Reyes, M., Schuster, V. y Svoboda, A.

Gómez Otero, J., Belardi, J. B., Súnico, A. y Taylor, R.

Gómez Otero, J., Belardi, J. B., Tykot, R. y Grammer, S.

Gómez Otero, J. y Novellino, P.

Gómez Otero, J., Tykot, R. y Falck, N.
2007 Isótopos estables, dieta y uso del espacio en la costa atlántica centro-septentrional y el valle inferior del río Chubut (Patagonia, Argentina). En Arqueología de Fuego-Patagonia. Levantando piedras, desenterrando huesos... y develando arcanos, pp. 151-161. Fundación CEQUA. Punta Arenas (Chile).

Gómez Otero, J., Weiler, N., Banegas, A. y Moreno, J. E.

Gómez Otero, J., Weiler, N. y Moreno, E.

González, M.

González, R., Narvarte, M., y Verona, C. eds.

González Díaz, E. y Malagnino, E.

Gordón, F.

Grayson, K. D.

Grayson, D. K. y Cannon, M.
Greenspan, R. L.

Grier, C., Flanigan, K., Winters, M., Jordan, L., Lukowski, S. Y Kemp, B.

Grimes, S. T., Mattey, D. P., Hooker, J. y Collinson M. E.

Gusinde, M.

Hammond, H. y Zubimendi, M.

Henshilwood, C. S. y Sealy, J. C.
1997 Bone artefacts from the Middle Stone Age at Blombos Cave, southern Cape, South Africa. *Current Anthropology*, 38: 890-895.

Higham, T. F. y Horm, P. L.

Hoffman, B.; Czederpiltz, J. y Partlow, M.

Irigoyen, A. J. y Galván, D. E.

Isla, F.

Izeta, A.
1999 Los ictiorestos arqueológicos del sitio Moreno (costa norte de la provincia de Santa Cruz, República Argentina). En *Actas del XII Congreso Nacional de Arqueología Argentina*, pp. 489-492. La Plata.

Jaureguizar, A. J., Bava J., Carozza, C. R. y Lasta, C. A.

Jones, E. L.

Juan-Muns i Plans, N., Rodrigo García, M. J. y Rodríguez Santana, C. G.

Kelly, R.

Kennett, D.

Kokot, R. y Favier Dubois, C. M.

Krebs, C. J.

Leach, B. F.

1997 A guide to the identification of fish remains from New Zealand archaeological sites. *New Zealand Journal of Archaeology* (Special Publication).

Leach, F. y Anderson, A. J.

Leach, F. y Davidson, J.

Leach, F., Davidson, J. y Fraser, K.

Leach, F., Davidson, J., Fraser, K., y Anderson, A.

Leakey, L.

Lindström, S.

Llagostera, A.

Llagostera, A., Kong, I. y Iratchet, P.

Llompart, F. M.
2011 La ictiofauna de Bahía San Blas (Provincia de Buenos Aires) y su relación con la dinámica de las pesquerías deportiva y artesanal. Tesis Doctoral Inédita. Universidad Nacional de La Plata, Buenos Aires, Argentina.

Lupo, K. y Schmitt, D.
Lourandos, H.

Lyman, L. R.
2011 Paleoeological and biogeographical implications of late Pleistocene noble marten (Martes americana nobilis) in eastern Washington State, USA. Quaternary Research, 75: 176-182.

Madsen, D. B., y Schmitt, D. N.

Manzi, L., Borella, F. y Cardillo, M.

Manzi, L. M., Favier Dubois, C. M. y Borella, F.
2009 Identificación de agentes perturbadores y estrategias tendientes a la conservación del patrimonio arqueológico en la costa del Golfo San Matías, Provincia de Río Negro. Intersecciones en Antropología, 10: 3-16.

Magurran, A. E.

Mansur, E.

Marani, H.
2014 Aprovechamiento de vertebrados terrestres y aves marinas por las poblaciones humanas que habitaron la costa rionegrina del golfo San Matías a partir del Holoceno medio. Tesis doctoral en preparación.

Marani, H. y Borella, F.
2012 Evidencias de aprovechamiento de Martineta (Eudromia elegans) en la costa Norpatagónica (Argentina) durante el Holoceno tardío: ampliando el espectro de recursos para la subsistencia. Poster presentado en el II Encuentro Latinoamericano de Zooarqueología, Santiago de Chile.

Marcos, M. A., Favier Dubois, C. y Mancini, M. V.

Marcos, M. A. y Mancini, M. V.
Marlowe, F.

Martin, F. M. y Borrero, L. A.

Martínez, G. y Figuerero Torres, M. J.

Martínez, G., Flensborv, G. y Bayala, P. D.

Martínez, G. y Gutiérrez, M.

Martínez, G. y Martínez, G. A.

Martínez, G., Zangrando, A. F. y Prates, L.

Martínez, G., Zangrando, A. F. y Stoessel, L.

2006 Use of coastal resources with special attention to fish in the lower basin of the Colorado river (Argentina). *10th Conference of International Council for Archaeozoology (ICAZ)*. Libro de Resúmenes, pp. 118-119. México DF.

Massone, M. y Torres, J.

McNiven, I., Crouch, J., Richards, T., Dolby, N., Jacobsen, G., Gunditj Mirring Traditional Owners Aboriginal Corporation.

Mengoni Goñalons, G.

Menni, R.

Momber, G.

Moreno, J. E.
Moreno, J.E., Zangrando, A. F., Tessone, A., Castro, A. y Panarello, H.

Murdock, G. P.

Musali, J.

Musters, G.

Nacuzzi, L. R.

Nagaoka, L.

Nichol, R. y Wild, C.

Nicholson, R.
1993a Investigation into the effects on fish bone of passage through the human gut: some experiments and comparisons with archaeological material. *Circaea*, 10(1): 38-51.
1995 Out of the frying pan into the fire: what value are burnt fish bones to archaeology? *Archaeofauna*, 4: 47-64.

Olivares, G. y Sisul, A.

Orchard, T. y Szpak, P.

Orensanz, J. M., Escofet, A. y Scarabino, V.

Orquera, L. y Gómez Otero, J.

Orquera, L. y Piana, E.
1999a *La vida Material y Social de los Yámana*. EUDEBA. Buenos Aires.

Rojo, A. y Silvosa, M.

Romero, M. A., Ocampo Reinaldo, M., Williams, G., Narvarte, M., Gagliardini, D. y González, R.

Sandweiss, D.H.

Sanguinetti de Bórmida, A. C.

Sanguinetti de Bórmida, A. C., Weiler, N., Nami, H., Cursio, D. y Eugenio, E.

Scartascini, F. L.

2011 Implicaciones metodológicas en torno a la recuperación de restos ictioarqueológicos: reflexiones iniciales desde un locus en Saco Viejo, Río Negro. Presentado en las VIII Jornadas de Arqueología de la Patagonia, Malargue, Mendoza Libro de resúmenes, pp. 73.

Scartascini, F. L. y Cardillo, M.

Scartascini, F. L., M. Charo y A. Volpedo

Scartascini, F. y Volpedo, A.

Scartascini, F. L., Volpedo, A. y Saez, M.

Schellmann, G. y Radtke, U.
2010 Timing and magnitude of Holocene sea-level changes along the middle and south Patagonian Atlantic coast derived from beach ridge systems, litoral terraces and valley-mouth terraces. Earth-Science Reviews, 103: 1-30.

Schmid, T.
Smith, E. A.

Stephens, D. y Krebs, J.

Stoessel, L.

Stewart, H.

Stewart, K. y Gifford-Gonzáles, D.

2009 Informe del relevamiento de los apostaderos de lobos marinos de un pelo (*Otaria flavescens*), de la provincia de Río Negro durante enero del 2009. *Informe Técnico Interno*. Instituto de Biología Marina y Pesquera, SAO, Río Negro.

Svoboda, A.

Svoboda, A. y Gómez Otero, J.

Tacon, A. y Metian, M.

Tonini, M.

Torres, J.
2007a El rol de los recursos ictiológicos y las practicas de pesca, en las ocupaciones litorales de los grupos selk’nam y pre selk’nam del norte de Tierra del Fuego. Memoria para optar al título profesional de arqueólogo inédita. Universidad de Chile, Facultad de Ciencias Sociales, Dpto. de Antropología.

Torres J., Silva, C. y Lucero, M.

Transilvaniio, M.

Ugan, A.

Vale, D. y Gargett, R.

Van Neer, W., Ervynck, A., Bolle, L. y Millener, R.

Viedma, A.

Volpedo, A. V.

Volpedo, A. V. y Echeverría, D.

Volpedo, A. y Fernández Cirelli, A.

Volpedo, A., Miretky, P. y Fernández Cirelli, A.

Wheeler, A. y Jones, A.

Willis, L. y Boehm, A. R.

Winterhalder, B.

Winterhalder, B. y Smith, E. A.

Yellen, J.
Yesner, D.

Zangrando, A. F.
2009b Is fishing intensification a direct route to hunter-gatherer complexity? A case study from the Beagle Channel region (Tierra del Fuego, southern South America), World Archaeology, 41: 589-608.

Zangrando, F. J., Martinoli, M. P.

Zohar, I. y Belmaker, M.

Zohar, I., Belmaker, M., Nadel, D., Gafny, S., Goren, M., Hershkovitz, I. y Dayan, T.

Zohar, I., Dayan, T., Galilli, E. y Spanier, E.
Este libro resume las investigaciones doctorales llevadas a cabo por el autor en la costa del Golfo San Matías, Provincia de Río Negro. Desde una mirada arqueológica indaga acerca de las actividades de pesca de grupos cazadores recolectores, un fenómeno hasta el momento poco tratado en la costa continental patagónica. Esta investigación es abordada desde diferentes líneas de evidencias, entre las que se destacan la zooarqueología, la tecnología y los análisis para evaluar los variaciones en los paisajes del pasado. Los resultados alcanzados por este trabajo permiten comprender mejor los cambios ocurridos en los modos de vida de las personas que ocuparon la costa rionegrina durante más de 7000 años. Además, contribuyen a la caracterización de las dinámicas ecosistémicas de los ambientes costeros patagónicos en contextos no industriales.